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A FORUM FOR RESEARCHERS

This eleventh annual meating of PME can be singlod out for the largest
number of scientific communications ever contributed and for the widest
geographic distribution of its participants. One of the reasons for this success
must be attributed to a constant concern for improvement that can be traced
back to the early beginnings of PME. The founding members will remamber that
follnwing the first meeting in Utrecit in 1977, it was decided that research reports
would be called for and that these would be published in Proceedings. At the
very next meeting, in Osnabrilck, this tradition was stated and has been
rnaintained ever since.

This concarr for establishing a forum tor research in mathematics education
was also reflected later on when the aims and objectives were formalized in our
constitution adoptsd at the Berkeley meeting in 1980. Two of the major goals
mantioned in that docurment are:

(1) to promote international contacts and exchange of scientific information in
the psychology of mathematics education, and

(2) to promote and stimulate interdisciplinary research in the atoresaid area
with the cooperation of psychologists, mathematicians and mathematics
teachers.

The constitution also emphasizes the importance of research in its
membership qualification, membership being “open to persons involved in
active research in furtherance of the Group's aims or professionally interested in

the results of such research”.

Over the years, several efforts have been made to change the philosophy of
PMZ. At different times there have been pressures 1o transform it variously into @
more teacher oriented organization, Of into a general discussion group for
mathematics educaturs. The objectives pursued in these attempts were quite

laudable, for indeed serious thought must be given to the problem ot bringing
research to the teaching profession. Equally important is the realization that

some very serious issues exist in mathematics education which are beyond the
iil
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research domain. But there are many other groups whose vocation is precisely
the discussion of these questions. On the other hand, in mathematics education,
there are no intarnational groups other than PME whare rasearchers can gather
and discuss their work among themselves. Evidence that our associaticn
answars such a need can be found in the very impressive number of research
reports in the PME-XI scientific program. Thus, it seems essontial that PME
shoukd continue to be primarily a forum for researchers.

This is not to say that we can ignore the more ganeral issues, such as the
significance of constructivism for mathematical didactics, witness the fact that
this happeris to be the theme of our plenary sessions. Indeed, the discussion of
such issues proves to be essential, for it provides us with an opportunity to
situate our own research in a broader perspective. And it is against this
enriched backdrop that we can exchangs mcre profitably the results of our
individual research.

Improving the quality of our scientific exchangas has been an ongoing
concern for many years. This has been discussed at several meetings of the
internatioral Committee {i.C.). More recsntly, at the London meeting of the 1.C.,
there was general approval of the suggestion that the PME-Xi Program
Committee formulate criteria for the selection of research reports. Following this,
the President, Pearla Nesher, mandated us 1o carry out this recommendation. At
its October 1986 meeting, the Program Committee: (Behr, Bsrgeron, Herscovics,
Kieran, Nasher, Romberg) agreed to the following criteria which were published
in the first announcement;

To allow for a broad range of research issues,
both empirical and theoretical papers will be
included. pPapers reporting empirical research ought
to deal explicitly with the following:objectives,
theoretical framework, methodology, data source,
resuits, conclusions, and importance of the study
for the psychology of mathematics education. These
contributions need not be limited to completed
research. Ongoing studies may be reported; however,
preliminary results must appear in the paper.
Papers stating merely that results will be
presented at the meeting will not be accepted.

RIC 8
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Theoretical papers are equally important. They
can be quite varied and deal with questions of an
epistemological nature, methodological problems, a
new theoretical approach, a synthesis of the
literature in a specific domain, etc. These papers
must relate the issues under consideration to the
existing relevant literature, indicate how their
persvective differs from others, and how they
contribute to the psychology of mathematics
educat ion.

The criteria we proposed were aimed at improving the readability,
coharencs and significance of the research reports. The need to provide a
theorstical framework and 10 relate issues to the existing literature was
considered essential in order to astablish a continuity indispensable for
scientific progress. The formulation of some minimal criteria for theorstical
research reports was to prevent mere “armchair reflection” from being passed
off as research. Our intention was to provide a forum for as many ideas as
possible and to encourage a spirit of disciplingd inquiry.

Some Innovations

Formulating criteria for research reports was not the only innovation carried
out this year. For the first time, research report proposals were subjected to a
blind review process. Each one was sent to two reviewers with experience in
the given domain. They were askad to use the criteria for research reports as
quidslines in evaluating the proposal and to racommend ane of the following:

In evaluating these proposals, please keep in mind
that it is not always feasible to cover all the
criteria in the required 500 to 700 words.

Unconditional Accaptance indicates that the
proposal deals with significant issues in a
coherent manner reflecting the suggested criteria.

Acceptance with resaervation indicates that either

: the proposal deals with an issue of questionable
importance or that it does not adhere to the
suggested criteria. Please make your remarks
sufficiently detailed so that we can make explicit
suggestions to the author for improving the
research paper.

O
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Rejaction indicates either that the issues dealt
with arxe considered irnsignificant, or that the
proposal is totally incoherent, or that it cannot
qualify as empirical or theoretical research.
Please make your remarks sufficiently detailed so
that <¢he Organizing Committee can provide a
reasoned rejection.

That the implementation of criteria and a blind review process did not have
a discouraging eflect is avidenced by the racord number (185) of research
report proposals received. The review process was carried out by 52
colleagues, time constraints limiting thelr selection to North Americans. Those
proposals which received unconditional acceptance (44) by both reviewers
were so accapted by us. Where one of the reviewers recommendad
accaptance with reservation 0. rejection, we gave the propasal a conditional
acceptance (132). Authors were provided with a copy of the reviewers'
comments and were asked to take their remarks into consideration when writing
the final version of their paper. Where both raviewers racommended rejection of
the praposal, we in turn studied each one very carefully. Only 9 proposals wera
not accepted as research reports. Their authors were provided with the
raviewars' comments and were urged 1o submit thelr contribution in the form of
a poster prasentation or as part of a working/discussion group.

The 176 accepted proposals resulied in 155 research reports, since 20
proposals wera withdrawn for a variety of reasons (such as lack of travel funds,
conflict with summaer schools, elc.) and one paper was rejected for it did not
davelop the themes announced in the proposal. We would like to have been
able to read the final drafis ot the research repons to see if the suggestions of
the reviewers had beean taken into account, but time did not allow it. Thus, every
paper that was not withdrawn or rejected appears in the Procesdings.

In order to continue improving the quality and scope of discussions
surrounding the paper presentations, another innovation was planned. While in
the past many contributions were grouped into subthemes (early arithmatic,
geometry, problem snlving, etc.), no attempt was made at bringing the reported
research into perspective and suggesting future directions. Such syntheses are
included in this year's program. Whenever the content of papers was sufficiently

related, they were groupad inte subthemes warranting a synthesis. We solicited
vi
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nino ostablished authoritios to comment on these grouped sets of papers. Their
task was to prepare a wiitten rasponse to appear in the Proceedings, present it
at the Conterence, and lead the ensuing discussion. In their commentary, they
ware asked to address more specifically the following questions:

-  How has each paper contributea to this arca of research?

-~ Arc there common threads to be found in the papers?
(e.g. research questions, methodologies, results, etc.)

- what are the major questions in this area of research that
stiil need to be answered?

- Are there any indications in these papers on how to tackle
them?

More ihan half the research papers (83 out of 156) wara grouped into the
nine commented subthemes. The syntheses of these papers should prove to be
highly valuable. On one hand they provide the person unfamiliar with a given
domain with a broad overview of the current research In that area. On the other
hand, for those researchers in a given domain, they provide an opportunity to
rolate their individual work to that of others in the same fiald. Furthermore, these
commentarios should stimulate a higher level of discussion at the Conferance.

OUTLINE OF THE PROCEEDINGS

The Plenary Papers

As a theme for the plenary papers, wu celected a broad topic of general
:nterest in the psychology of mathematics education: the theory of
constructivism. Current issues involve questions cf definition and distinction
from other psychological theories, the status of constructivism as a theory of
knowledge acquisition, its implications for research on teaching and lgarning in

general and for research on mathematics educatior in particular. These issues
are addressed by four eminent scholars: Professor Hermine Sinclair who has
written from the perspective of a psychologist, and Professor Jeremy Kilpatrick,
from that of a mathematics educator. These two perspectives are also reflected
in the two reactions given by Dr Gérard Vergnaud and Professor David
Wheeler.
vl
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The commented research reports

The commentad rasearch papers have boon grouped into the following

subthemes and cornmentad by:

Affective factors in mathematics learning
Algebra in computer environments
Algsbraic thinking

Fractions and rational numbers
Geomatry in computer environments
In-service teacher training

Mathematical problem solving
Motacognition and problem solving
Ratio and proportion

The uncommanted research reports

Douglas B. McLeod
David Talt

James J. Kaput
Thomas E. Kiaren
Celia Mary Hoyles
Michael Shaughnessy
Edward A, Silver
Frank Lestor Jr.
Marlyn J. Behr

These papers werg sometimas difficull to group since a given report could

be classified under different topics. We tried as much as possible to retain the
authors' preferred classitication. The papars have baen grouped under the

following headings:

Arithmetic

Cognitive devalopment
Combinatorics
Computer environments

Disabllities and the learning of mathematics

Gander and mathematics
Geometry

High school mathematics
Mathematics instruction
Measurament cuncepts

Philosophy, epistemology, models of understanding

Pre-sgrvice teacher training
Tertiary level mathematics

viii

Q 1.2
ERIC

Aruitoxt provided by Eic:




Papers on the N.C.T.M. Research Agenda Project

The North American Chapter of PME (PME-NA) has sponsored the
reporting of the Research Agenda Project, a two-year project aimed at
daveloping conceptual frameworks and research agendas in four critical areas
of mathematics education research -- middie school number concepts, the
teaching and learning of algebra, the teaching and evaluation of problem
solving, and effective mathematics teaching. Papers reporting this projact are
the following:

The Research Agenda Project : An overview Judith Threadgill-Sowder
Effective mathematics teaching Thomas Cooney and Douglas A. Grouws
Learning in middle school number concepts Merlyn J. Behr and James Hiebert
Thae teaching and leaming of algebra Carolyn Kieran and Sigrid Wagner

ix

13




ACKNOWLEDGMENTS

Wae wish to thank the following organizations for their financial support:

The Social Sciences and Humanities Research Council of Canada
- Le Ministére de I'Education du Québec
- Fonds pour la Formation de Chercheurs et fAide & la Recherche
L'Université de Montréal
- Vice-rectorat & 1a planification et & la recherche
- LaFacuité des Sciences de Education
- La Section d'éducation préscolaire et d'enseignement primaire
- Concordia University '
- Vice-Rector, Academic
- Ans and Science Faculty
- Department of Mathematics
- L'Université du Québec & Montréal
- Décanatdes études avancées et de la recherche
- Département de mathématiques et d'informatique
The North American Chapter of PME.

We also wish to express our heartfeit thanks to the many peopie who
contributed to the success of this Conference. To begin with, the commentators
who in a very short period of time (about three weeks) produced a synthesis of
the papers they received, the reviewers some of whom handled as many as 12
research report proposals, and the many committee members listed below:

Reviewers

Allaire, Louise Université de Montréal

Baroody, Arthur University ot lilinois

Bednarz, Nadine Université du Québec a Montréal
Behr, Merlyn Northemn ilfinois University
Bélanger, Maurice Université du Québec & Montréal
Boileau, André Université du Québec a Montréa!

X

« 14




Byers, Bill
Campbell, Patricia
Cobb, Paul
Coonay, Thomas
Dassa, Clement
Dionne, Jean
Driscoll, Mark

Dufresne-Tassé,Colatte

Gaulin, Claude
Gelman, Rochel
Goldin, Gerald
Graeber, Anna
Grouws, Douglas
Gurtner, Jean-Luc
Hanna, Gila
Héraud, Bemard
Hiebert, Jarnas
Hille!, Joe!
Janvier, Claude
Kaput, Jim
Kayler, Hélene
Kieren, Thomnas
Kirshner, David
Lappan, Glenda
Lemoyne, Gisale
Maher, Carolyn
MclLeod, Douglas
Moser, James
Mundy, Joan
Noeiting, Gérard
Qlive, Joehn
Owaens, Doug
Pallascio, Richard
Puchalska, Ewa
Reyes, Laurie Hart

Concordia University

University of Maryland

Purdue University

University of Georgia

Université de Montréat

Universita Laval

Education Development Center, Inc.
Université de Montreal

Université Laval

University of Pennsylvania

Rutgers University

University of Maryland

University of Missouri

University of Fribourg/Concondia Univ.
The Ontario Institute for Studies in Educ.
Université de Sherbrooks

University of Delaware

Concordia University

Université du Québec a Montréa!
Southeastem Massachusetts University
Université du Québec a Montreal
University of Alberta

University of British Columbia
Michigan State University

Université de Montréal

Rutgers University

Washington State University
Wisconsin Dept of Public Instruction
University of New Hampshire
Université Laval

University of Geargia

University of British Columbia
Universitd du Quebec 4 Montréal
Université de Montréal

University of Georgia

xi

15




Robitaille, David Univarsity of British Columbiiu

Romberg, Thomas University of Wisconsin
Scally, Susan Paalz Emory University
Schultz, Karen Gsorgia State Univarsity
Schwartz, Judah Harvard Graduate School of Education
Senk, Sharcn Syracuse University
Shaughnessy, Michael Oregon State University
Sherrill, Jim University of British Columbia
Thompson, Patrick lllinols State University
Wagner, Sigrid University of Georgia
Weame, Diana University of Delaware
Secretariat
Anne Bargaron Université de Montréal

" Marilyn Coganoviich

Local Reception Committed

Louise Chalouh Concordia University

Jean Dionnae Univarsits Laval

{_uce Dionne

Nicole Nantais Université de Sherbrooke

Jean Portugais Univ. de MontréayConcurdia Univ.
Héiane Tesslar Concordia Univarsity
Technologlcai Equipment

Réjean Dutil Université de Montréal
Pierre Nonnon Université de Montréal

it many thanke,
£,

oo ba s Voetrcok cp
éweyw 7@4««),
oThe Editone
16 xii




E

HISTORY AND AIMS OF PME

PME came into existence at the Third international Congress on
Mathematical Education (ICME 3) held in Karlsruhe, Germany, in 1976. PME is
affiliated with the International Commission for Mathematical instruction (ICMI).
Its past presidents have been Professor Efraim Fischbein ot Tel Aviv University,
Protfessor Richard R. Skemp of Warwick University, Dr Gérard Vergnaud of the
Centre National de la Recharche Scientifique in Pars, and Professor Kevin F.
Collis of the University ot Tasmania. The ten previous annual meetings have
taken place in The Netherlands (Utrecht), West Germany, the United Kingdom
(Warwick), the United States, France, Belgium, Israel, Australia, The
Netherlands (Noordwijkerhout), the United Kingdom (London).

The major goals of the Group are:

1. To promote international contacts and the exchange of scientific
informaticn in the psychology of mathematics education;

2. To promote and stimulate intardisciplinary research in the aforesaid area
with the cooperation of psychologists, mathematicians and mathematics
teachers;

3. To further a deeper and better understanding of the psychological aspects
of teaching and learning mathematics and the implications thereot.

International committee members

Present officers of the group :

President Pearla Nesher (Israel)
Vice-President Nicolas Balacheff (France)
Secretary Joop van Dormolen (The Netherlands)
Treasurer Carolyn Kieran (Canada)

xiil
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It 13 tempting to begin by comparing the constructivist movement 1in
mathematics education, at least as it is being manifested in the United
States, to any of the waves of religious fundamentalism that have awept our
soclety in its three-and-a-hnlf-century history. A slege mentality that
seeks to spread the word to an unoomprehending, fallen world; a band of true
believers whose credo demands absolute faith and unquestioning commitment,
whose tolerance for debate is minimal, and who view compromise as sin; an
apocalyptic viston that governs all of iife, ansvers all questions, and puts

an end to doubt--these are some of the parallels that might be drawn.

I shall not begin with such a comparison, however; it would be unfair,
Instead, I shall discuss what constructivism might be for mathematics
eduostors, I was invited to axamine what constructivism 13 from the point of
view of mathematics education, but as one who stands outside both
constructivism a8 a belief system and philosophy as a profession, I have
decided that 1t would also be unfair for me to claim that I know, let alone
could tell you, what 1t is, As Jere Confrey (1986) recently noted,
presenting "construotivism in all tts glory™ (p, 347) is a contradiotion,
presumably because an understanding of construotivism must itself be
conatruoted from the inaide out; it cannot be simply displayed or presented,
(I sm tempted to add that 1t sounds as though an initial commitment 1s

prerequisite to that oonstruotion, but I shall forgo that temptation too,)

In this paper, I discuss first what constructivism seems to be, to judge
primarily from the writings of some authors who oluim to know. Then I

consider various claims that, from the outside, do not seem essentisl to
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constructivist doctrine., Finally, I explore some directions that educators

wWho consider themselves constructivists might take,

Each of these topics is examined from the ,.int of view of mathematics
educatlon, Although constructivism has had some influence on litsrary
studies (von Glasersfeld, in press), it seems to be having an espeoially
strong impact on the thinking and activities of mathematios eduoators. Much
of this impaot is undoubtedly due to our views of mathematics and the
learning of mathematics. We seem to have little difficulty adeopting such
language as "Eddie has constructed rational number® or "Sally has constructed
the fundamental theorem of calculus." Qur colleagues in other subject
fields, however, probably find it awkward to make such aasertions as "Eddie
has constructed osmosis™ or "Sally has oonstructed the Monroe Doctrine." The
clalm that there is an independently existing world "out there" that can be
known by the cognizing subjeot {s explicitly avoided by constructivism. That
avoidance leads some mathematlcs educators to reject the language of discover
in favor of construct when referring to the genesis of mathematical {deas—a
rejection that might seem rather casy and harmless. One can describe the
recent proofl of the four-color theorem, for example, as having been
constructed rather than discovered without doing much violence to the ideas
involved. A corresponding rejection in other fields, in contrast, might lead
to such distortions as "Priestley construoted oxygen" or "Cartler constructed
the Saint Lawrence River."™ The mutual attraction betwecen constructivism and
mathematics 1s an intriguing theme that cannot be developed fully in the

paper but that is touched on again at the conclusion.
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what Constructivism Seems to Be

Mathematics educitors have arrived at their views on students’
construotion of mathematical knowledge by many routes, including genetlc
epistemology, informetion sclence, and symbolic interactionism. A
comprehensive analysis of constructivist positions held by contemporary
mathematics educators would undoubtedly reveal many points of agreement and
many divergenclea, In North Ameriom, the major exponent of oonstruotivism,
as known by mathematics educators, ia Ernst von Glaserafeld (1983, 1984,
1985, 1906, in presa), who through his writings and his work with Les Steffe
and colleagucs (Steffe, von Glasersfeld, Richards, & Cobb, 1983) has argued

for a instrumentalist theory of cognition in which the mind is modeled aa

organizing oxperience 3o as to deal with & real world that cannot itaelf be
known. Although von Glasersfeld's theory {s far from being accepted in 1ta
entirety by all who march under the constructivist banner, it offers the moat

coherent and elaborated basis for an initial analysis.

An snolent, unresolved epiatemologioal problem for Western philosophy
concarns how an independent objective reality ocan ever be known by a
cognizing subject who has no way to check what his or her knowledge 13

knovledge of. Any attempt to test the truth of what 18 known must {uselfl be

an act of knowing and hence subjective., Any knowledge of "objective truth,”
therefore, 13 imposaible, Constructivism outs the Gordian knot by separating
eplstemology from ontology and arguing that a theory of knowledge should deal
with the it of knowledge to experience, not the match between knowledge and

reality, The only reality we can know 13 the reality of our experience.

Q (
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The constructivist view involves two principles:

t, Knowledge is aclively constructed by the cognizing subject, not

passively reeeived from the environment.

2. Coming to know is an adaptive process that organizes one's experiential
world; 1t does not discover an independent, pre-cxisting world outaide
the mind of the knower,

As von Glasersfeld (1985, in press) and Cobb (1986) have noted, the first of
these principles is much more widely accepted than the second vy paaple who
think of themselves as constructivists, The first principle is one to which
most cognitive scientists outside the behaviorist tradition would readily
give assent, and almost no mathematics eduocator alive ond writing today
claime to belinve otherwise. The second principle 13 the stumbling block for
many people. IL separates what von Glascrafeld calls trivial constructivism,
(1986) coll atmple constructivism from the radicnl constructivism that 419

based on the acceptanve of both principles.

Radical constructisism i3 radical because it rejects the metaphysical
reallsm on which moat empiricism rests. It requires that its adherents forgo
all efforts to know the world as it truly is. 1In what von Glasersfeld (1985)
terma "an cven greater effort of decentration" (p. 82) than humanity needed
to glve up the view of our planet as the center of the universe, radical
constructivists claim that we need to abandon our search for objective

truth.

Constructiviam asppears to have been given fts first formulation by Vico
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in the 16th century (von Glasersfeld, in preas), whose motto "!EIEE_E!E.&EEEE
factum" (the true i3 the sams as the made) encapsulates his claim that we can
only know what we have constructed, God can know his creation becsuse he
created it; we, however, can only know what we ourselves have created.

Modern constructivism dispenses with any consideration of God's creation. It
focuses instead on the clash between, on the one hand, the Xantian argument
that experience can teach us nothing about things in themselves and, on the
other hand, the e;idenoe of our own experience, which says that we live {n a
fairly stable and reliable world (von Glasersfeld, 1984, p. 27), Tha
developmental side of constructivism, first developed by Baldwin and by
Plaget, attanpts to give an account of how human beings, with access only to
thelr own sensations and to the operations of their own minds, construct such

a world (von Glasersfeld, in press).

The mechanism that constructivism postulates as driving development
cones from the theory of evolution: just as the physical organism adapts to
its environment, so cognition develops through adaptation, Adaptstion is
coping with the possible, not representing the actual. The mind constructs
knowledge that adapts to the world in much the same way as one might
construct a key for a lock. The key is not the image of the lock; it is,
rather, one of many keys that might open the lock (von Glasersfeld, 1983,
p. 95). Or, to use another metaphor, the captain sailing a ship through a
channel on & dark and stormy night with no navigational aids, never actually
comes to know the channel, If his ship wrecks, he learns something about
what his course should not have been, but if he passes through the channel

successfully, he cannot know whether his course might have been improved.
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His course fit the channel, but he cannot know how well it matched the

channel's topography (Watzlawick, 1984).

Radical constructivism adopts a negative feedback, or blind, view toward
the "real world." We never come to know 8 reality outside ourselves.
Instead, all we can learn about are the world's constraints on us, the things
not allowed by what we have experiencey as reality, what does not work. Out
of the rubble of pour failed hypothesas, we continually erect ever more

elaborate conceptual structures to organize the world of our experience,

We are, therefore, self-organizing, self-regulating, self—contained

systems (von Foerster, 1986; von Glasersfeld, 1986). Heither knowledge nor

inforamation flows in or out of us; we are informationally closed, Because we
are also self-reproducing 3ystems, we are sometimes termed autopoietic
(Maturana & varela, 1980). This conception, or rather this set of related
conceptions, rests on a cybernetic analogy between human cognition and the
behavior of independant effectors in protozoa and metazoa, neurons in the
mammalian central nervous system, chemical reactions, insect societies,
lagers, superconductors, and other systems that are far from equilibrium and

to some extent self-organizing (Haken, 1977; Nicolis & Prigogine, 1977).

Because we are closed systems, language and other forams of communication
entall not the interchange of ideas between us but the construction of
Subjective realities to fit the experiences we have had of situations we have
shared. Each of us constructs meaning for the language we use as we build
our experiential world, and the meaning in turn shapes that world. Heanings

cannot be communicated; they are necessarily subjective,
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& full account of constructivism would consider such questions as how do
we know others, what is objectivity, and is there a constructivist ethics
(von Glasersfeld, 1985, 1986), The constructivist view of what others sce a3
socially constructed knowledge 1is in particular need of exigesis.

Unfortunately, however, space does not permit an exploration of these

iasues.

In susmary, vadical constructivism seeas to be an epistemology that
makes all knowing active and all knowledge subjective, Following modern
phyaical sociences in its rejection of the possibility of coming to know
ultimate reality, it treats the cognizing subject as the organizer of his or
her own experience and the constructor of his or her own reality. 1t views
coming to know as & process in which, rather than taking in information, the
cognizing subject through trial and error constructs a8 viable model of the

world.

An experiment at Stanford University by Alex Bavelas captures well the
essence of constructivisa (see wWatzlawick, 1984): The experimenter read to
each subject a long list of number pairs (e.8., 31 and 80, 77 aad 15). The
task was to say whether or not the two numbers wrie 0 After each response,
the experimenter would lndicaie whether or not it was correct, The subjects
invariably wanted to know in which sense the numbers were to fit and were
told that the discovery of those rules wWas precisely the point of the task.
The subjects then assumed that they were engaged in a typical trial-and~error
experiment and proceeded to make random "fit® and “do not fit" responses. At
first, the subjeots were wrong every time, but as they formulated hypotheses

as to how the numbera wWere related, they gradually began to improve, and




eventually every response they made was correct. Their hypotheses, though

not perfect, received increasing support.

What the subjects did not know was that the experimenter's responses
followed a predetermined sequence from all incorreot, through a varying
mixture of inoorrect and correct, to all correot. The sequence had no
connection to the choices the subjccts made. When the experiment was over,
however, and the.subjects were told of the deception, they refused to
relinguish their assumption that there wWas an order in the number pairs.
Some subjects even claimed that there was a pattern in the numbers that the

experimenter had rot been aware of.

In an abjective sense, there was no order in the number pairs. That did
not stop the subjeots, however, from clalming that they had discovered an
order. They constructed a reality to fit thelr experience, and they can
serve as models of how all of us—in the‘eyes of constructivism—organize our

experiential worlds.

What Constructivism Seems Hot to Be

As a theory of knowledge acquisition, constructivism is not a theory of
teaohing or instruction., There is no necessary connection between how one
views knowledge as being acquired and what instructional procedures one sees
as optimal for getting that acquisitlion co occur. Epistemologies are
descriptive, whereas theories of teaching or instruction must necessarily be
theories of practice (Kerr, 1981). Honetheless, constructivists have sought

to derive implioations for practice from their theory, and in some writings
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the impliostion seems to be drawn that ocartain tesohing praotioces and views

about instruction presuppose a oconatructivist view of knowledge. That

implication is false.

Von Glasersfeld (1983, in press) has identified five consequences for
educational praotice that follow from a radiocal construotivist position: (a)
teaching (using procedures that aim at generating understanding) becomes
sharply distinguishad from training (using procedures that aim at repetitive
behavior); (b) proossses inferred as inside the student's head become mors
interesting than ovart behavior; (o) linguistio communioation becowes a
process for gulding a studant's learning, not & process for transaferring
knowledge; (d) students' devistions from the teacher's expeotations beocme
means for understanding their efforts to understand; and (e) teaohing
interviews bsoome attempts not only to infar cognitive struotures but also to
modify them. All five consequences fit the oconstruotivist atance, but they
appear to fit other philosophioal positions as well,

Teaoching and Training

The contrast between teaching and training is an old one in educational
philosophy. Most peopl? would probably argue that although the two conoepts
are different, training is a part of tesohing when aimed at actions that
display some intelligence (Green, 1968). The eszence of the distinot%ion
batween the two seems to hinge on whether the action involves explanations,
reasons, argument, and Judgmsnt-—-presumsbly the sources for the taacher to
conolude that the student has understood. Making the distinotion into a
dichotomy ignores the contexts in which the two terns are used

interchangeably but may be useful {f it can be defended. Certainly the
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understanding/behavior contrast fits with the traditional view of teaching as
giving instruction, aiming at the acquisition of knowledge and belief, as
opposed to forming habits and engendering repetitive behavior.

Inside Versus Outside

The attention to processes inferred as going on inside the learner's
head rather than to the learner's overt responses seems to be a hallmark of
the constructivist position. On the one hand, it is difficult to imagine any
teacher——even Skinner, when he is teaching—looking at a student's behavior
only as uninterpreted behavior and not using it to make inferences about what
the student was thinking. Any effort aimed at detecting signs of thinking,
which teaching most assuredly is, must assume that the teacher makes such
{inferences. On the other hand, the most radical constructivist, lacking
direct acoess to the student's mind, is forced to fall baok on overt
responses as the only constraints the world provides for making inferences
about internal processes. What else is there? The contrast, then, seems
truly one of focus. The behaviorlst teaoher attempts to see in the overt
behavior; the constructivist teacher attempts to see through it. The ensuing
teaohing actions, however, may not be any different.

Constructed Versus Transferred

The metaphor of knowledge being constructed by the learner, like the
metaphor of knowledge being transferred during teaohing, is only a metaphor,
Both metaphors seem to have some utility for describing what goes on when one
person is teaching others. When constructivists shift their attention from
students to teachers, they observe that many teachers quite happlly use the

transport metaphor:

O
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"1 got the ideas across." . , ,

"Some students pick things up quickly.®

"Why can't we chop this section of the content out?"

"The teacher 13 a medium for delivering curriculum to

students.” (Davis & Mason, 1986, pp. 8-9)
The teachers quoted evidently have construoted a modol of the world in whioh
the transport metaphor provides a viable way of talking about instruction,
That model {3 apéarently wrong (I am not sure how the oonstructivists havs
come to know that {t is wrong, but assume they have), so the task facing the
oonstructivists is to ohange the teachers' model, The strategy they have
adopted is to deny the validity of the metaphor ("knowledge cannot be
transferred to the student by linguistic communication,” von Glasersfeld, in
press) and to atteapt to change the metaphor by ohanging the language used to
talk about instruction (“teachers with a constructivist leaning are likely to
see themsclves not as delivery agents of an educational system, but more as
gardensrs, tour guides or learning counsellors," Davis & Mason, 1986, p. 9).
Whether teaochers can be moved to revise both their language and their
conception of insatruotion remains to be seen. Cobb (1983), conceding that
constructivists "often manage to tic ourselves in linguistic knots® (p. 1),
attributes the problem to a quest for precision, A plausible alternative
hypothesis is that it stems from an aversion to common language forms that

ordinary people find viable but that signal dangerous thoughts to

constructivists,

Cobb (in press) nas argued for a conatructivist analysis of mathematics

instruction over a transmission analysis because (a) mathematical objects and
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structures that the teacher oan "see® are unlikely to be apparent to
studeqts. (b) students' misconceptions are better understood when seen as
arising from alternative constructions of meaning than aa failures in
communioation, and (¢) theories of instruotisn ought to be consistent with
theories of learning and conceptual developm:nt. It is not clear how the
abstrect nature of mathematics fits a constructivist analyais better than a
tranamission analysts. People who conceive of teaching as, at least
sometimes, transmission ought to be just as puzzled as the constructiviat
over how to put mathematics into a tangible form that can be ¢xamined, talked
about, and sysbolized. Contrary to Cobb's argument, one need not claim that
mathematical structures are somehow visible in the environment in order to
hold that ideas sbout those structures can be communicated to students. If
you doubt that, ask the next instructor of collegiate matlhiematics you
encounter. The case of misoonceptions is similar; one can model
misconceptions as arising froa alternative oonstructions or from & breakdown
in communication. Either can lead to attempts to find out what the student
is thinking. The issue of consistency is a different matter. It becomes an
argusent for employing constructiviam as an approach to teaching only if one
accepts conatructiviam as an adequate desoription of the acquisition of
knowladga. It 15 not by itself an argument for constructivism,

Unexpected Errors

The attention that constructivists have paid to teaohers' expectations
and students' deviations from those expectations as clues to students!
thinking is one of the most attraotive and promising aspects of

conatructivist work, Many models of the learner treat the learner as 3jomeone

ERIC 18
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who 13 sttempting to make sense of the teaching encounter., Consistency
demands that they slso treat tha teacher as somecne who 13 attampting to make
3enss of that ssse encounter, Constructivists have drawn our sttention to
the teacher's view of the student's knowledge a3 a phenomenon worthy of
inveatigation. But again, on¢ need not be a constructivist to be {nterested

in, or to study, tha arrors students make that are contrary to the teacher's

expectations,

In fact, the constructivist view may turn out to be something of a
liability, Whereaa tha transeission view of teaching takes successful
communication as what Cobb {in press) tarms its "paradigm case," the
construotivist view takes as ita paradigm cass the situation in which
communication braska down and students and teachers "talk past each other.”
This arguasent may yield a conception of communication in teaching as a
process that faila mo3t of the time. Of coursa, we learn from the errors
that we and othars make, but a full view of cognition suggests that wa also
learn from our successes., One cannot deny that the world i{s full of
classrocas in which much miscommunication about mathematics is taking place,
To take miscommunication as the paradigm, however, ia to ignore the role of
Successful communication in prowoting learning. The negative feedbaok model
may be useful !n describing self-organizing systems that do not mind having
negative feedback modela of themselvas, but its utility in dasoribing
teachers and students to themselves may be limited. Few people reapond well
to claims that they are failing most of the time, especially when their own
models of their communication are signalling success. It may be more

produotive in the long run to show teachers and students that the glass is
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not Juat half empty but also half full.

Teaching Intervieus

\ Steffe und his colleagues (1983) have ploneered an extension of Piaget's
clinical interview in which a child is set a mathematical task, the response
13 analyzed in teras of a model of the child'sa understanding of the task
constructed from an interpretation of that and other responses, additional
tasks are given to test the model, and instructicn is provided by the
interviewer in an effort to develop the child's conceptusl atructures and to
model that development &s it cacurs, The term teaching experiment is often
used to describe such sn interview, but that ters refers more appropriately
to a procedure from the Soviet Union in which a class is instructed by their
regular teacher and sn experimenter uses their responses, together with data
from interviews with seleocted students, to guide, in consultation with the
teacher, the course of subsequent instruction. Teaching interview seems a

more appropriste term for what Steffe and his colleagues do.

History, not logical necesaity, links the teaching interview to
constructivisa, Interviews in which instruction coours have never been
popular in resesrch traditions that demand a high degree of control because
the instruction would likely he quite varisble and compsrisons would be
diffiocult tc make, Nonetheless, teaching interviews have for some time been
populer in Europs end the Soviet Union se & means of atudying oognition.

They have made their way to North America independently of constructivism,

The impulse to adopt the learner's point of view when one is tesching 1is

a worthy impulse, Successful teaching, like sucoessful communication,

<
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depends on having a good modal of the other, Constructivists, however, do
not have a monopoly on the view of taaching that sees students and teachera
negotieting as they develop shared meanings, They are not the only people
who believe that teaschars should listan to students and attempt to understand
what they ars thinking. They are not the only ones to encourage

investigative work by studentsa—any more than behaviorists are the only ones

who give lactures,

What Conatructivism Needs to Be

Connected to Ontology

A cantrel problem with constructiviam seems to be its relstion to
ontology~~what 1s. Von Glasarafald (1985) claims that oonstructivism
"daliberately and conssquantially avolds saying enything about ontology, let
alons making sny ontologicel commitwents. It intends to be no more and no
la3s than ona viable model for thinking about the cognitive operaticns and
results which, oollsctively, we call 'knowledge'" ( p, 100), Nonatheless,
construotiviets seldom bahave as though they have made no ontologlcal
commitments, lat alona that thair view 13 only onas ssong many. To reject
"mataphysical resliem® is to take an ontologlcsl stand, Cobb's (1983)
eschewal of "rsslist lenguage" expresses an ontological view. Contrasting
radioel construotivista with raslists (pDevie & Maaon, 1986), by ssying what
conatruotivism is not, contributas to the construotion of & constructivist
ontology. Furtharmors, such arguments as those given by von Glasersfeld
(1985, in prass), Cobb (1986), and Davis and Mason to the effeoct that the

only good oonatructivist is a radical conatructiviat implioitly reject the
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viability of alternative views within construotivism, let alone outside.

Conatructivists need to clarify and develop their ontologica’
commitments, Cutting episcemology loose from metaphysics as & way of solving
the epistemological dilemma does not provide a satisfavtory resolution of our
problems as eduoators. We need sn epistemology that takas ontolegy into
acoount. "We must Keep metaphysiss and epistemology tied together so that
(a) our explanation of Knowledge does not leave us oommitted to thare being
things we oannot acoount for in our theory of Being, and (b) our theory of
Knowiedge (thus restricted) can socommodate our olaim to know what Being 13"
(MoClellan, 1981, p. 265).

Connected to Mathematics

I referred at the outset of the paper to the affinity betuween
constructivism and mathematios, so it might scem inconaistent to suggest that
constructivism bacome more or better connected to mathematios. What I mean
{s that oonstructivists need to think through and spell out more clearly than
they have done thus far the relationships between conatructivism and both

mathematios as a disoipline and mathematios as a schoul subjeot.

Von Glasersfeld (in presa) has noted that “oonstruotiviam has as yet
only an implioit relation with the constructivist approach to the foundations
of mathematios (Lorenzen, Brouwer, Heyting)." The foundations of mathematics
may not pose as much of a problem to constructivism as the practice of
nathematics. As Davis and Hersh (1980) contend, "the aotivity of
mathematical research forces a recognition of the objectivity of mathematioal

truth. The 'Platonism' of the working mathematioian 1s not really s belief

(1
aw)
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in Plato's myth; 1% i3 just an awareness of the refractory nature, the

. stubbornnass of wathemstioul facts. They ara what they are, not what we wish

O
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them to ba" (p, 362), Or, as Gardner (1981) put it, "the existence of an
external world, mathematically ordered, 13 taken for granted. I have yet to
meet & mpthematioian willing to say that 1f the human race ceased to exist
the moan would no longer he spharicwl™ (p. 37). Construotivism needs to come

to terms with mathematical reslism.

Moreovar, constructivism needs to addreas tha olaims of & new approsoh
to the philosophy of mathematics, "quasi-empiricism" (Tymocrko, 1985), whiah
studies the prul: Je of Wathesmdtios in @& socolohistorioal contaxt and whioh
appears to be compatible with both realist and constructivist mathematios.
Mathematics seems to ba wearing & more humsn face thase days; one hears of
"mathsuatios as & humanistio disoipline.® If indeed it is a humanistio
disoipline, than perhsps radiosl conatruotiviam can find e volce to apeak to
all or the humanities and not just tha ones sean as tha most abstraot end
subjsotive. Yioo claimed: "Mathamatios i3 orsatad in tha self-slienation of
the human spirit. The spirit cennot discover itself in mathematics. The
human spirit lives in human institutions” (oited in Davis & Hersn, 1986,

p. x). As Davis and Harsh (1986, p. 305) obasrve, parhaps aoae day the uh?de
of Vico will look down from Elysium and soknowledge that mathematios is a
human institution. And perhsps othar construotivists will some day
agknowledge that their view of mathematios has not deslt adequately with

mathematical practice.

Nor has it deaslt adequetely with school mathematlcs. Epistemology alone

oannot answer the question of what mathematios to teach. An analysis of
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knowiedge cannot yleld o curriculum. The curriculum depends on our purposes,
on what we value, about which epistemology 1s necessarily silent. To think
otherwise i3 to commit what Martin (1981) terms "the epistemologlcal
fallacy," Some constructivists (Kamii, 1684; Steffe, 1987; Thompson, 1985)
have attempted to bulld curriculums on a constructivist foundation. Martin
argues that we flrat need to determine the moral, soolal, and political order
we beliave to be desirable, then set out our educational purposes, and in the
1ight of those purposes choose curriculum content and objeotives. An
epistemology may be useful to us at that point in dealing with cognitive
objectives, but other theories will be needed in dealing with noncognitive
objectives, We need to be careful not to put the construotivist oart before
the values horse,

Connected to Reallty

If Bauersfeld's (1987) analysis is correot, each scientific theory in
the human scienced deals with its own reality from its own perspective.
Competing theories cannot judge one another, and mctatheories are {mpossible
because thers 13 no external fulcrum on which Lo hang a comnon perdpective,
framework, and language. Therefore, a theory such as constructivism should
be seen as having a limited domain and perapeotive; it cannot become a
metatheory that drives all of education, let alone mathematios education.
Honctheless, there 1s a need for poople working within one theory to
communicate with peopla working within other, necessarily incompatible
theorles., A common technlcal language is not pussible, but a common

lcss-technical language 13 not only possible but essentisl.

Consty detivism nceds to becume more connected to reality. Not the

1
o
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inverted commas "reality"” about which one reads so much in constructivist
writings, but the reality of everydasy sclentific activity, mathematical
invesatigation, and clasaroom practice. People live in that reality, and they
try to communicste with esch other within its constraints. If constructivism
has something to say about what it means to come to know mathematics beyond
the nathematias of the elementary school, about how teachers night work with
pupils in groups, about how indireot guidance of lesrning can be handled
through the ;radés. then 1t needa to find a language with which to speak to
teachers on those matters. Condemning everydsy language by terming it
“reslist® or "reification®™ and then putting sanitizing quotation marks about

each usage of such words as discover, probles struature, and error may

preserve one's theoratical virtue but st the expense of reaching, and

keeping, one's audience.

The virtue some constructiviats need most 13 that of humility. It {s
untecoming, if not ludicrous, for the adherents of a relativistic theory to
treat it as though it wera absolute and final., A theory that claims to he
only one of many possible viable thecries ought to be more tolerant toward
competing theories, People who claim there are many possible ways to
construct knowledge ought to be more friendly and understanding towsrd peoplg

who have falled to conatruct their theory,

There i3 & moment in the film "Let Us Teach Guessing" in which George
Polya is asking a student whether, now that another case has been confirmed,
she believes the hypothesis they have been exploring. She replies, "Sort
of,” and Polys seizes on that wording to convey the stance one ought to take

toward all knowledge. We "sort of" bellieve—amuch more when we think we have

<y
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a proof, much less when all we have verified are a feu speciflic cases. The
researcher and the teacher need to take a "sort of" stance toward what they
are doing—having enough faith in and commitment to their knowledge to keep
golng forward, but keeping an open mind and being willing to reject a
position when disconfirmation i3 found. True believers make nelther good
researchers nor good teachers, Mathematics educators who are not ready to
become born-again constructivists may well find they can live viable lives as

sort of constructivists,

Author MNote

Paper prepared for the 11th annual meeting of the International Group
for the Psychology of Hathematics EGueation, Montreal, 19-25 July 1987, I am

grateful to John Mason for his comments on an earlier draft.
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CONSTRUCTIVISM AND THE PSYCHOLOGY OF MATHEMATICS
Hermine Sinclair, University of Geneva

I am neither a mathematician nor an educator of children,
and acconlingly not well versed in the literature on epis-
temological questions and teaching, even in the field
of elementary mathematics. My references to this volumin-
ous literature will be to authors with whom I happen to
have had personal contact, knowing full well that there
are others who have had equally important things to say.
My remarks on constructivism will be almost uniquely
based on Piaget's writings, and my examples of children's
mathematical reasonings mainly from authors who have some
link with Piagetian constructivists thinking. My talk
concerns the beginnings of mathematical reasoning, i.e.
until the age of seven or so : not because I think this
is the most crucial period, but because I have some axperi-
ence of working with children in the pre-school age.,
The latter part of my talk will be devoted to what are
called “"story-problems®, first because such problems are
often treated as presenting a link between "real-life"
situations and mathematical reasoning, and, secondly,
because I am particularly interested in language. Finally
I feel that the main purpose of my paper is to raise some
questions which grew out of my study of constructivism
and my, admittedly limited, knowledge of present day teach-
ing of mathematics in kindergarten and first and second
grade.

CONSTRUCTIVISM

Constructivism, as a theory of knowledge, is not easy to define
or even to describe. Piaget himself gave several descriptions at
different times, no doubt because certain aspects of the theory were
important within particular ocontexts. Thus I will not try to give
a full account of what Piaget meant by "interactive" or "dialectical"
constructivism, but shall only touch on some points that seem to have
particular relevance to mathematical thinking.

According to Piaget, the essential way of knowing the real world
is not directly through our senses, but first and foremost through
our actions. In this context, action has to be understood in the

following way : all behavior by which we bring about a change in the

world around us or by which w change our own situation in relation to
the world. In other words, it is behavior that changes the knower-known
relationship. Fram the baby who laboriously pushes two objects together
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or who attracts his mother's attention by crying, to the scientist
who invents new ways of making elementary particles react and the
child or adult who tries to convince his friends of his opinions,
new knowledge is constructed from the changes or transformations the
subject introduces in the knower-known relationship.

The quality of the knowledge gathered in this way is partly deter-
mined by the ways in which reality reacts to our interventions and
by its correspondence to the knowledge other people have constructed.
As von Glasersfeld (1983, pp. 50-51), who may be an even more radical
constructivist than Piaget, puts it : “From an explorer who is condemned
to seek 'structural properties' of an inaccessible reality, the experi-
encing organism now turms into a builder of cognitive structures intend-
ed to solve such problems as the organism perceives or conceives. ..
what determines the value of the conceptual structures is their experi-
mental adequacy, their goodness of f£it with experience, their via-
bility as a means for the solving of problems...".

In other words, at all levels the subject constructs "theories"
(ir action or thought) to make sense of his experience; as long as
these theories work the subject will abide by them. Since human beings
tend to push their ideas as far as they will go and actively seek
novel experiences, they will partly oonserve and partly transform
their ideas when this experience widens, and new questions arise for
which the theory is not adequate.

As Piaget, who saw himself as a realist of a rather special kind,
expresses it (1980, pp. 221-222) : "With every step forward in know-
ledge that brings the subject nearer to his object, the latter retreats
... so that the successive models elaborated by the subject are no
more than approximations that despite improvements can never reach
... the object itself, which continues to possess unknown properties..."
This does not mean that the knowing subjects are forever living in
a world of their own making; but it does mean that they can never
get absolute knowledge of reality as it is. According to Piaget,
this is applicable to children as well as to adult scientists and
to science as a social enterprise.

Not only is science a social enterprise, but all humans are
social beings; and it is the sharing of approximate models of theories
that assures the objectivity of the knowledge gained (vs. "subjective”
belief).
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The fuxamental constructivist view thus postulates changes in
the relation between subject and object; and the movement towards
better - though never perfec. - knowledge of the object has as its
concomitant another movement whereby the subject obtains better know-
ledge of his own actions or thought processes. There may not be perfect
synchronicity, but sooner or later every new conquest of the world
of objects will lead the subject to restructure his action- or thought
operations system, just as new deductions and inferences derived from
the internal system will lead to new interrogations of reality.

These movements towards ever more viable knowledge lead to differ-
ent kinds of knowledge : on the one hand, the subjects' reflection
on their own action-coordinations leads to logico-mathematical know-
ledge, ana on the other hand reflection on the properties of objects
and the changes actions produce leads to the natural sciences, such
as physics and chemistry. However, these different types of knowledge
are not gymnetrical. Knowledge of the world of objects cannot be
constructed in the absence of some kind of logico-mathematical frame-
work, whereas logic and mathematics can become pure, in the sense
of being free from particular contents. Clearly, this confers a special
status on logic and mathematics inside the edifice of human knowledge
in general. All activities imply general coordinations from the lowest
to the highest level; they can all be seen as leading to mathematiza-
tion. However, on this particular point I have encountered a difficulty
which I have not been able to solve, and which I think important for
psychologists and educators.

In certain passages (cf. Beth and Piaget, 1961, p. 251), Piagét
refers to "actions that are destined to become interiorized as opera-
tions®. Actions such as combining and ordering can bhe performed on
many different objects, but more importantly, they are, so to say,
realization of the most general coordinations of schemes. In any
activity, from the sinple reflex pattern to larmd actions such as
picking flowers or solving an equation or lighting a fire, actions
have to be combined and carried out in a certain order. A one-year
old who collects sewral objects and puts them into a container one
by one materializes in actions on objects cocordinations that are needed
for almost any action - picking up a spooh, plunging it into a carton
of yoghurt and stirring, or pushing a block with a stick along the
edge of the carpet, etc. etc.

The complexity of even the simplest intentional actions is enor-
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mous. As Minsky (1985, p. 21) puts it : for all of us "it once seemed
strange and wonderful to be able to build a tower or a house of blocks.
Yet, though all grown-up persons know how to do such things, no
one understands how we learn to do them! Minsky's analysis of the
act of building a tower shows the intricate organization of ordered
actions necessary for this purpose. The builder has to choose an
adequate spot to start the tower. add new blocks, decide whether it
is high enough. But to add a block, a new block has to be found,
the hand must get it and put it on the tower top. To find a new block,
it has to be seen, to get it, the hand has to move and grasp; to put
it on top the hand has to move and release.

But what kinds of actions are particularly “destined to become
interiorized" as mathematical operations? What are pre-mathematical
activities, i.e. activities that prepare what Bergeron and Herscovics
call intuitive mathematics? ‘There is, of course, one activity that
has a "“mathematizing" role, and that is counting, in itself a highly
complex activity (cf. Steffe & al, 1983). Gréco (1962) showed the
importance of counting for numerical invariance : counting, and the
one-to-one correspondences it implies transform the spatio-physical
reality of a collection of objects into a numerical mathematical reali-
ty. But surely there must be other activites as well, that lead to
mathematical concepts and operations?

I have yet another problem concerning constructivism and the
psychology of mathematics, and that is the difference between mathe-
matics and logic. Piaget always joins the two, and discusses logico-
mathematical operations as one entity., I have found several passages
(Beth and Piaget, 1961, p. 233-236) where intuitive geometrical, and
more generally, spatial concepts are contrasted with classes and num-
bers, and more generaliy logico-arithmetical entities (“étres"), but
none where logic and nathmatics are distinguishd-  Somehow or other
this question also seems to be important for psychologists; maybe

I will find some answers in this meeting.

A last question which has often been raised about constructivism
is worth mentioning, though in contrast with my other questions it
has been extensively studied : i.e. the place of social interaction
in this theory. It is true that Piaget only rarely studied social
interaction and that he did not carry out any stuiks on social interac-

tion as a factor of cognitive progress. But since "successive models
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or reality constructed by the subject remain approximations" ‘(Piaget,
1980), one needs some way of distinguishing between subjective beliefs
and objective knowledge. This is where Piaget adds : "Objective know-
ledge is only attained when it has been d° “ssed and checked by others"
(Piaget, 1965). Thus it is only when our .. .els or systems correspond
to those of others that they become an objectively valid base for
further progress, Sharing ideas, discussion and argumentation, or
more simply collaboration in constructive or pretend play, are essenti-
al ingredients for the growth of knowledge, at all developmental levels.
Moreover, the mastery of all conventional symbolization systems, from
spoken language to spoken numerals, arithmetic and algebraic notation,
depends to a great extent on interaction of young children with other
people : educators, parents and older children.

After this brief sketch of constructivism and the questions this
theory raises for. me as a peychologist, I shall discuss some nore
specifically psychological concepts that belong to the theory and
that, in my opinion, are fairly directly applicable to education.

1/ Normative facts

The elaboration of gradually more *“viable" models leads to the
construction of at first very limited systems of reasoning which in
turn lead to what Piaget calls “normative facts" or *noms". Normative
facts are ideas, concepts or modes of reasoning that are immediately
available for the construction of new inferences or hypotheses. The
subject feels such ideas to be both evident and necessary, and often
can no longer imagine that at some earlier time they were not present
in his mind. For example, the commutativity of addition is a normative
fact from the age of about seven : 3 added to 5 gives the same result
as 5 added to 3, and the same goes for 15 and 3 and 1,000,005 axd 3,
though if one has 3 dollars and gets 5 more that certainly makes a
difference, whereas if one already has a million dollars the increase
is imperceptible. Though seven-year olds may rot be able to reason
as far as millions, commutativity of addition is a normative fact
for them, it is felt as something that is "necessary” and it can immedi-
ately serve as a base for further reasoning.

In another field, the Urk between volume and the amount of water
displaced by an object that does not float is a nonmative fact from
about the age of ten. According to Piaget it is theé task of the psycho-
logist to study the gradual construction of such norms by the subject,
i I e
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i.e. what is necessary and evident in the subject's eyes, but not
whether the subject's “norms* are true in the scientific sense. Neith-
er of the above facts is normative for four- or five-year olds, but
what is more surprising is that a concept such as the commutativity
of addition may first be limited in scope; e.g. that the child may
use it as an inmediate base for problem solving as long as the num-
bers do not go beyond 10, or as long as one of the numbers is either
1 or 2. It is also important to note that in the constructivist view
the commutativity of addition and the relation between volume and
water-displacement have a common source, i.e. in the organization
of the interactions between the subject and the world of objects.
To many adults, scientist as well as laymen, mathematical “truths*
appear to be a priori, Plaonic ideas, tha emerge at some point in
development, whereas physical "truths" a.e rooted in leaming through
experience, and thus fit into empiricist theories of hnowledge. This
is contrary to the constructivist view.

2/ Instruments of knowledge

In "Psychogenése et histoire des sciences" {1983), Piaget discusses
another task for psychologists : to find out “which kinds of instruments
the subject uses for problem-solving, what their origin is, and how

they are elaborated" (p.22). 'These instruments or processcs constitute
the link between the knowing subject and the objects of his knowledge,
logico-mathematical objects as well as physical objects, and their
study belongs to epistemology and to psychology. Piaget proposes
that these instruments fall into two categories : correspondences
which imply comparison on the one hand, and transformations on the
other. These processes are totally general and operate at all levels
of development. Every action scheme is a source of “correspondences”,
since it can be applied to new jds or situations that are thus
compared without further transformation, and every coordination between
schemes is a source of transformations, since the coordiration can
result in a new type of action with its particular result. There
is thus right from the beginning a duality but also a lankage between
the two types of processes. But since children (and adults, and scien-
tists) first become aware of their transforming actions and their

results and only later of their comparisons between the objects as

such, in a static state, corespondences and comparisons remain indepen-

dent of transformations, often for a long time. At different levels
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of development, the cycle repeats itsell : subjects compare, choose
objects to transform, transform, take note of the results of their
transformations, and only later become awarc of links between the
transformations and the correspcdences they establish when making
comparisons.

Interestingly enough, immediately after having discussed comparison
and transformation {Piaget et Garcia, 1983, p. 23-34), Piaget speaks
about mathematical “"beings® ("étres") - what are they and where do
they come from? (p.25). This is, of course, the 64-dollar question.
Though Piaget's answer has not changed sance his carlier works on
number, (i.e. they derive from the subject's actions and his reflections
on these actions}), the two points I have just discussed scem to clarify
the problem to a certain extent. Comparing and transforming in some
kind of quantitative sense, as much in measuring as in counting, appear
to be activities that lead to reasoning systems (even if of small
scope) which imply normative facts. Measuring certainly deserves
to be mentioned as much as counting (cf. Vergnaud, 1979, p. 263-274,
and the discussion in Steffe & al., p. 19-20). Studies on very young
children (Sinclair & al., 1982) certainly seem to show that the roots
of actions that will lead to measuring and counting go back to a very
early age.

Around the age of twelve months, we observed many spontaneous
activities as in the two following examples (Sinclair & al., 1982,
p. 63-80). The children pull little bits of cottonwool from a big
ball, until it is reduced to many tiny flecks. ‘lhey carefully cobserve
the way the cottonwool stretches and then breaks. ‘Then they make
them stick together again; and then they start all over. At a slightly
later age (around one-and-a-half), we observed long sequences of activi-
ties with a string : they take the ends into their hands, stretch
them apart as wide as possible, touch the string with their nose in
the middle, let it go slack and start again. ‘They also put the string
around their neck, pull on one side, the other hand goes up, they
pull the other side down again, observe, etc. etc. It does not seem
too audacious to see in these activities the very beginnings of count-
ing and measuring, i.e. the very beginnings of what Piaget calls the
slow construction of mathematical objects. Certainly such behaviors
are a good exavple of the processes of comparison and transformation
with a different focus of attention : either on separate bits (which

will become countable) or on continuous lengths (which will become
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measurable) .

In short, 1 think that indeed constructivist psychology and its
related hypotheses lead us to seec the construction of mar eratical
objects and operations as a slow construction, deeply rootcl in all
human endeavors to make sense of their world. As I have alr :.dr said,

however, psychclogists do not yet seem to have taken ad. atage of

constructivist theory to show how this construction proce Js 1 the
specific domain of matheratics between the ages of two to si  or seven,
with the sole exception of counting behaviors. But much research

and many observations of classroom behavior show that som: urporient
mathematical constructions have already taken place.

Apart from numerical oonservation, Geneven research brought to
light many mathematical solutions in specific tasks that do ot invalve
counting (Gréco & Morf, 1962; Gréco, Inhelder, Matalon & Piaget, 19¢3)
and that may precede, accompany or follow success on the numerical
conservation task. Five-year olds already know that if one persn
always takes one object when another takes two, the fommer will o
any stage of the proceeding have half as many objects as the lotter;
somewhat later children begin to understand the connexivity of nunber,
etc. ete.

In educational settings one can also observe typical oxamples
of mathematical reasoning, already in first grade. Kamii and DeClark
(1985, p. 233) report behaviors such as the following. Ann, asked
about 9 plus 9 inquires: "What is the 8 plus 8 one?" When told it
was 16, she says "18, 1f you know that 8 and 8 is 16, you know how
to skip another one and 1t has to be 18",

During a discussion about what should be brought to a party for
the 26 children in the class, Mary announces : "If five pecple bring
five apples and someone else brings one, there will be enough for
everyone". ‘These first-graders had the benefit of a special program
devised by Kamii and DeClark, but they were otherwise an ordinary
class - not a selected group. They certainly were reasoning mathemati-
cally; their remarks show noreover the depth and spontaneity of their
reasoning, and Mary demonstrates an excellent formulation of what
could be a story problem.

Evidently, during the years that precede formal instruction in
arithmetic, ordinary, everyday experiences lead to important mathemati-
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cal achievements hy the age of six or seven, though the children may
not be able to apply them to classical pen-and-paper school arithmetic.
What are these experiences, and how could their stimulation help child-
ren that do not seem to have mathematized them?

Krutetskii (1976, p. 217) reports parents' and caretakers' remarks
about children that turned out to be brilliant in mathematics : they
were observed to be fascinated by counting from the age of three onwards.
Somehow or other I suppose that this was the behavior that struck
the adult observers, but that there must have been others. Kamii
and DeClark, and many other researchers in mathematics education think
so, too, and they often consider the early introduction of story-
problems as a way of capitalizing on the children's comprehension
of daily events that occur without any explicit mathematical context.
However, the exanmples given always concermn counting, addition or
subtraction. It seems as if it is tacitly assumed that the only spon-
taneously occuring activities during the pre-school years that are
"mathematizable” are those that imply counting. In other school pro-
grams the introduction to mathematics is, by contrast, limited to
logic (set-theory, class-inclusion, exc.), but the problems in this
framework do not seem to have any link at all with the ordinary activi-
ties of four- or five-year olds. For the moment, and as far as I
know, the only way education tries to build onto such activities is
the presentation of addition and subtraction story-problems.

In the last part of my paper I will make a number of critical
remarks about story-problems as a psycholinguist, kmowing full well
that many researchers in mathematics education have made similar r.e-
marks and that my knowledge of the literature is limited.

First, in a trivial sense, story-problems are not stories, because
stories tell you something, they don't ask you something : the solution
to a problem is more like a story than the problem itself. But in
a less trivial sense, I feel that one has to find a solution (apart
from some calculations) before one can construct the problem, or maybe
at the same time, but certainly not after. Formulating a problem
clearly and mathematically is not a step towards its solution but
part of the solution itsclf. The already mentioned example of Mary
(p. 1l) can maybe illustrate this point, which I am afraid remains
rather intuitive. Wwhen Mary announces : "If 5 people bring S apples
and someone else brings one, there will be encugh for everyone®, she
is asked how she figured that out so quickly. And she answers : "I
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counted by fives. S¥?5-10- 16 - 20- 5, and then one more is 26".
Though I cannot explain how she came to this computation, T co think
that it was the computation that allowed her to formulate a stoLy-
smiution. Moreover, by saying "S people... and someone else..." in-
stead of "5 persons (as an adult might do)... and one..." she made
perfectly clear what is in fact a problem of guantifying in natural
ianguage : somecne else, not one of the five already mentioned. Pre-
cisely because story-problems ornly pretend 0 be stories, nost of
them continually transgress the rules of natural language usage.
Matural language quantification, for example, does not directly corres-
pond to quantification in logic.

In an interesting article Freeman and Stedmon (1986) start from
the observation that English, a natural language, has at least three
words that can be seen as universal quantifiers : each, every and
all, and can be used in affirmative guantification with reference
to an oterior  reality of catable objects. This gives rise to sen-
tences such as "All the dogs are aggressive", "Each dog is aygressive”
and “"Bvery dog is aggressive" when talking acout a particular coilec-
tion of dogs. If one adds universal statements such as "All dogs
sre mammals", "Dogs are manmzls" or "The dog is man's best friend”,
and quantifiers such as some, as in "Some Jogs are aggressive", "Some
of the doys are agressive", "There are some agressive dogs in your
garden", etc. etc., the variety of natural language quantifiers may
casily bewilder the subject who has to e.aluate the truth of any such
expression, and, we may add, any subject who has to take such an cr

pression as the basis for a calculation.

The authors of the article 1 have quoted examine the case of
all the, each and every, and argue that these words have both a deter-
minative and a quantifying function : Before one can decide whether
"All the dogs are agyressive” 1s a true statement or not one has to
know which dogs are being talked about. Moreover, though as far as
quantification qoes all and each are equivalent, as far as meaning
in ordinary language goes they are not : all is collective, each is
distributive, and every is somewhere in between. After discussing

several studies carried out with young children, Freeman and Stedmon

conclude that children clearly have trouble coordinating the determina-

tive and o antifying functions of expressions such as all, all tne.

every elc., and that it is unjustified to consider tests using these

expressions as tests of logical reasoning. A similar conclusion should,
O
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in my opinion, be drawn about story-problems : when such exxrssias
(as well as some) are used in story-problems, the problems are not
necessarily tests of mathematical reasoning. Not only quantifiers,
but also verb-tenses and pronominalization are used in story-problems.

In ordinary narrative discourse, a succession of the same tenses
(he thought... he said... he went... he bought...,) indicates a success-
ion of reported events identical to the order of utterance; whenever
the speaker intends a different o:der he indicates this by other mark-
ers : conjunctions such as before or after, or adverbial expressions
such as already, or contrasting tenses, or combinations thereof.
Simultaneity is expressed by specia) markers such as meanwhile, while,
etc. Often, however, the addressee's knowledge of normally occurring
events allows iuim to interpret temporal order or simultaneity as intend-

ed by the speaker, without precise indications : Mary and Anne came
to visit us (i.e. together at the same time); Mary put on her socks
and shoes (i.e. socks first, shoes afterwards). The linguistic and
pragmatic rules for the use of tenses, pronouns and other coherence-
providing devices in story-telling and understanding are not easy,
and as many researchers have shown, they are still being worked out
by children between the ages of 6 and 9 or 10, but many of the rules
they have already constructed are to a greater or lesser degree trans-
gressed in story-problems. In other words, there is not only a logico-
mathematical graduation of story-problems according to whether they
concern change of state, reunion, comparison, part-whole relationships
etc, which make scme problems harder than others even though they
demand the same operation with the same nubers, but also a graduation
in the degree these prublems violate in their wording discourse rules
that children have already mastered.

De Corte and \rschaffel ( } in a detailed analysis of the
strategies children use in solving elementary addition and subtraction
story-problems clearly dmmstreteé  “that for large number of children
the main difficulty does not lie in selecting the proper arithmetic
operation but in a prior stage, namely the construction of an appropri-
ate problem representation”. 1 Wwpidrartdly  agree, and would simply
add that the trouble with certain story-problems is not so much that
they are "very condensed and, in a sense, even ambiguous" (p. 13)
as that they treat quantifiers as logicians treat them, neglecting
their natural language functions and that they transgress ordinary

O
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discourse rules especially story-telling rules. De Corte and Verschaff-
el give several examples of “"vvong”, but as they say, quite coherent
representations of a problem; let me just quote one as an illustration.
The problem is :

Pete has 3 apples; Anne also has some apples;

Pete and Anne have 9 apples altogether;

how many apples does Anne have?
The children were given two puppets and a stock of “apples” (blocks).
They were asked to act the problems and their answers. One child pro-
ceeds : He gives Pete 3 apples; then he gives Anne 3 apples ("also
some") and he places nine blocks in the space between Pete and Anne.
His answer to the question “"How many apples does Anne have?” is to
count the apples he had put ain front of Anne and to say : “"Three".
This child clearly follows the niles of ordinary discourse : in the
second sentence, following the first description, the quantifier some
is interpreted in its usuval meaning of two, three or four; and because
of the word "also" three is the obvious choice; the third sentence
then describes the next event : somebody gives the two children 9
apples which are intended for both of them.

Clearly, as De Corte and ursuffel argue, the child in the
exanmple had not constructed a correct representation of the problem,
and the acting-out modality demonstrates where the problem-representa-
tion went awry. Additomally, it seems to me that the acting-out
method reinforced the idea of the problem being a stery, which it is
not; in fact, most story-problems, except those that concern a change of
state problem such as

Peter had 3 apples; his uncle gave him 2 more apples.

How many has Peter now?
violate discursive story-telling rules (cf. also Escarabajal and Verg-
naud, Congrés de Rome, juin 1986). To be ablc tu solve arithmetical
"story-problems" children have to learn a new set of rules hfune
they can even think about what owwrical operation to perform. It
seens highly nprobabls that such problems are “less abstract”, "clusw

to real-life experience” than simple mental arithmetic without

apples, marbles, children, cars and what-not. Of course, solving simi-
lar problems when they are presented in horizontal notation with
+, -, = and missing addends etc. may be even nore difficult, since
it implies another set of swiplisuyy rules to be learned, but once

again, this would not show that story-problems are closer to tcal-
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l1fe situations.

CONCLUDING REMARKS

Mathematics and logic occupy a special place in the edifice
of human knowledge, and, in my opinion, constructivism theory clari-
fies their particularity. Concepts related to the theory, such as
abstraction, comparison, transformation, and the gradual elaboration
of normative facts give us at least some idea of what is implied
by the capacity to conceptualize mathematical aspects of actions
and events - a capacity which provides the very foundation tgr mathe-
net1cs kamng.

It is certainly possible to assume that this capacity develops
spontaneously, without direct intervention of parents or teachers.
At all times, some children have dowlooed mathematical thinking
in essentially similar and creative ways despite inadequate education
prograns. Unfortunately, not all children - not even the majority
- do so. Constructivism, as a psychological theory of knowledge,
has already contributed to the elaboration of methods that can guide
the majority of children through the complex landscape of mathematics.
It bhas led psychologists and educators to question some of their
own "norms” and refocused their thinking about mathematics teaching.
I hope that the constructivist point of view can still do far more,
and that this conference will be a step in that direction.
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llermine Sinclair's paper and Jeremy Kilpatrick's paper are quite
different both in the tune they adopt and in the questions they address.
Hermine Sinclair gives a summary of the plagetian views on construc-
tivism and shifts to an analysis and a critique of story-problems.
Jeremy Kilpatrick's paper is rather organised as a reaction to contem-
pary american researchers like Von Glasersfeld, Steffe, Cobb, Confrey

and others ; I have to react to a reaction.

I find both'papers most interesting ; although they might be more
specific of mathematics education and research on mathematics education.
As a matter of fact, our job, as researchers, 1s to understand better
the processes by which students learn, construct or discover mathematics
so as to help teachers, curriculum and test devisers, and other actors
in mathematics education, to make better décisions. This is our practical
burden. Theory is essential, as it 1s also our burden to organize our
knowledge on mathematics education in coherent systems of description
and in powerful concepts.

Jt is essential to understand how individuals develop or fail to deve-
lop mathematical knowledge, therefore to discuss altcrnative interpreta-

tions of constructivism and other theoretical frameworks.

The relerence to Piaget is unavoidable as he was, in his days,the most
systematic theorist of constructivism. To understand his views, one
needs to relate them to the questions he was addressing, In 2 fashion
that paraliels the idea that we have to relate the acquisition of mathe-
matical ideas by children to the problems they are faced with.The term
"opistemology" covers a large range of meanings ; one of these meanings

concerns the relationship of knowledge to the practical and theoretical

problems to which is tries to provide an answer.

This aspect of epistemology enlightens the way we may approach the
development of new mathematical concepts, procedures and representations

{n the child's mind. Lt may also ~nlighten Plaget's views about congtruc-

~1
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tivism, as Plaget developed Lis framework as an answer to the general
quest fon "liow does knowledge develop" : he tried to make this philoso-
phical question a scientific one by studying the development of children's
lntelligence and knowledge. Por him, constructivism contradicts both
empiricism and a priori rationalism. His critigue of empiricism is pro-
bably better known than his critique of rationalism, but one must never
forget that his work on the representation of space and time (and speed)
{s a direct response to Kant's theory that space and time would be a-priori
catggories of the pure raison.

Plaget was most influenced by the neo-kantian french philesopher Leon
Brunschwig : his conce;t of scheme was originally borrowed from Kant,

but his framework 15 aimed to be different from Kant's views as much as
from Hlume's views. The reason for this must probably be traced in his

background as a biologist and an evolutionist.

In the field of paychology, this framework led him both to the empirical
study of development, and to the critique of both associationism and

gestalt theory.

As llermine Sinclair reports, Pleaget's "Interactive constructivism' or
"dialectical constructivism”, stresses the fact that, on the one hand,
children do not eimply "read" experience but have schemes and categories
to interpret experience, and that these schemes and categories are not a
priori schemes and categories but derive from inborn schiemes and experience.
Action i3 essentiml as children accommodate their schemes through action
upon the physical (and social) world, in order to assimilate new situa-
tions : necarly in the same way as sclentists develop new procedures and
concepts from former knowledge to understand and master new phenomena. The
relationship between Plaget's '"genetic epistemology" and the historical
epistemology of science is obvious, nlthough Plaget rejected the theory

of parallelism between ontogenesis and phylogenesis.

lermine Sinclair shows very clearly that, for Piaget, “"new knowledge is
constructed from the changes or transformations the subject introduces
in the knower-known relationship', but that "the quality of knowledge is

partly determined by its correspondance to the knowledge other people

Sc 77

Aruitoxt provided by Eic:




- 45 -

have constructed, and partly by the ways in which reality reacts to
our interventions". If the subject's knowledge of reality develops by
successive approximations, this does not mean that reality does not
exist : Plaget was not Interested in this metaphysical question and
was not a "radical’ constructivist in Von Glasersfeld's meaning of the
word “radical™. lle did not elther pretend that the undividual could
develop his knowledpe through his Jonely experience ; on the contrary.,
confrontation and decentration are important processes that take place
in social situvationsand help children develop new and better schemes
and ideas. Sinclair's quotation "Objective knowledge i{s only attained
when it has been discussed and checked by others' (Plaget, 1965) shows

clearly that Flaget did not deny objectivity and social interaction.

llermine Sinclafr also shows that, for Plaget, action is not only a way

to transform the outside world but also a way to question it. 1 agree
with her.

1 amnot sohappy when she takes for granted Piaget's distinction betwcen
logico-mathiematical knowledge, abstracted from action (reflective abstrac-
tion), and physicsl knowledge, abstracted from the proporties of objects
(empirical abstraction). As physical properties of objects are also
abstracted thiough action and experience, it 1s not so easy to follow
Plaget's views on this point. And they may have wrong consequences upon
the theoretical frameworks of research on mathematics education , for
{nstance on the concrete-formal debate. This debate does not concern only
early achool mathematices, but all levela of mathematics learning and
teaching, including University. But before T go into a deeper analysis
of this question, I would like to mention that, in Kilpatrick's paper,
some comments refer to the very same problem, although with different

words.

One of the arguments used for Kilpatrick agalnst radical constructivism
{s that one may adopt such language as "g£ddie has constructed rational

number” but not "Eddie has constructed osmosis".
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“The claim that there 13 an independantly existing world 'out there'

that can be known by the cognizing subject is explicitly avoided by

constructivism”, Kilpatrick says,and he purposedly uses examples outside
mathematics, developing this idea with historical examples : one might
say that the four-colour theorem has been "constructed", whereas one

would not aay that “Priestley constructed oxygen" or " Cartler cons-
tructed the Saint Lawrence River"”. The language of discovery 1s opposed
to the language of construction. "The mutual attraction between cons-
tructivism aqd‘nathematlca is an intriguing theme" says Kilpatrick ;

it parallels the plagetian distinction between two kinds of abstraction,

leading one to wathematics and the other to physics.

Kilpatrick mentions two principles aa the basis of constructivism.

1 -~ knowledge ia actively constructed by the cognizing subject, not
passively received.

2 - coming to know 18 an adaptation process that organizes one's expa-

riential world. It does not discover an iidependant, pre-existing world.

k\As far as 1 can see, there are two independant ideas in the second one,
as the adaptative process is one thing,and the radical constructivist's
denfal of an independant pre-existing world another thing. This last
idea might just as well be considered as trivial solipsism, rather than
radical constructivism. One may accept the first principle and the first
part of the second one, and not the last part of the second one ; and
this is just as radical as radical constructivism, which fails to provide
a theory of objective knowledge. Adaptation does cope with the actual
world, and not with a purely imaginary fantasy. There is no random rein-
forcement that can give us the confidence and the feeling of necessity
that we have in uaing our knowledge of spatial relationships and trans-
formations, or our knowledge of numbers : within the social and scien-
tific knowledge that we call mathemetics. Students are invited to share
that knowledge, and eventually contribute to produce it if they become

mathematiciana, What is thelr problem as students ?
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Kilpatrick reports on five different questions, that have been raised
by Ven Glasersfeld himself.

- teaching versus tralning

- inside processes versus overt behavior

linguistic communication and transfer of knowledge versus construction

- intexpretation of errors

~ teaching interviews as a powerful method.

I will not xepept here what is very well reported in Kilpatrick's paper.
I agree with him that some consequences of radical constructivism are not
specific of radical constructivism. But I also would like to say, in
defence of constructivism, that some of them do contradict empiricism
and other widely accepted information-processing models of cognition,
especially those which see knowledge as an additive combination of rules,

or as a purely symbolic calculus, or as a net of static structures.

At this point I fecl the need to change my way of discussing Sinclair's
and Kilpatrick's papers. 1 need to start from examples and from my own

point of view.

Let us start from the analysis of the competence to count & sget of
objects. This requires a one~to-one correspondance between objJects,
finger movements, eye movements and number woxds ; it also requires
the cardinalization of the whole set, using the last word twice or
with two meanings, one for the last object (ordinal), the other for

the cardinal of the whole set,

Counting a set is a scheme, a functional and organized sequence of rule-
governed actions, a dynamic totality whose efficiency requires both
sensori-motor skills and cognitive competences : cardinal, exhaustion,
no repetition... There are important '"normative facts" {implicit in it,
(to follow Sinclnir's vocabulary), or "invariants", or ''theorems-in-

action” as I usually call them.
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Hany different schemes are involved in the solving of the different
subclasses of additive and subtractive problems : they consist either
of {inding the adequate operation and the adequate data, or using a
counting procedure that simulates the astructure of the problem,or trans-

forming adequately the structure of a problem into another one..,

Children also develop important and complex schemes to coordinate dif-
ferent motor-skills and different rotations and translations in space,
and etill recognize the invariance of the objects and relationships under
control, So;e of these skills appear quite early in the child's develop-
ment, others appear later and only through & mathematical or quasi-~

mathematical analysis : think of technical design for instance.

Some of these schemes are rather spontaneously shaped by children, in
the gense that they are not really taught by adults,and depend heavily
on the recognition by children of their function and organization. Yet
we must never forget that these activities are not purely invented by

children as most of them exist in their social and physical environment,

- and require practice : children spontaneously train themselves and repeat

rhe same scheme under the same circumstances or under d.verse circums-

tances, to master it and delineate its scope of validity.

Whatever the influence of the social and physical environment may be,
T consider that the development of such schemes relies essentially on

the construction, by the child, of adequate cognitive invariants and
skills.

Neo~behaviorists might say that the concept of scheme 18 not necessary
and that the concept of skill (as overt behavior produced by ruies) is
sufficient. For me the recognition and repregentation of cognitive inva-
riants such as objects, properties and relationships are essential com—
ponents of schemes, as the hierarchical development of schemes 1is tightly

assoclated with the recognition of more and more complex :nvariants.
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This {s true for scnsori-motor schemes and for intellectual schemes like

those involved in mathematics.

The true cognitive task of the child is to "conceptualize” the wortd, so

as to act upon it efficiently. This process is not easy, and it usually
goes with all sorts of fancy "“eonceptions". But the feed back of the phy-
sical and social world truely helps the child to shape his aschemes : for
fnstance, the conceptions of addition and subtraction are shaped by the
first sttuations mastered by children (addition as increase and subtraction
as decrease), but these conceptions have to change when children deal with
other cascs of addition and gubtraction, although there are always sequels

of their primitive conceptions.

I'n this process of recognizing invariants in the world and developing
schemes, there is no difference, at the beginning, between mathematics and
physics. The Jdifferentiation comes later. Mathematics deals essentially
with number and space. There would be no meaning for the concept of number
{f there were no physical quantities, discrete or continuous. There would
not cven he auny primitive conception of addition and subtraction {f trans-
formations, that occur in time, did not take place. Time is not usually
vieued ag a mathematical concept but rather as a physical one. But all

we know ezbout children's mathematical schemes shows that we must make
room for the representation of time in children's mathematics. Space is
also both mathematfcal and physical, as there would be no repregentation
of space if it was not full of physical objects. The concept of uumher s
tightly associated with the concept of measure (cardinals are measures)
and it is only when the concept of number ia already well developed that

children are able to think about properties of pure numbers.

It is not the distinction between abstraction from action and abstraction
from objects that enables us to understand the distinction between mathe-
matics and physics, but rnther the level and the kind of objects we are

dealing with. The concept of whole number is a good example : for young
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children it is tightly associated with the measure of discrete quantities

and the ranking of physical objects ; but as it is used for many diffe-

rent kinds of quantities (even continuoua magnitudes), and for different
rankings, it can be abstracted from the specific physical properties and
glve birth to the concept of pure number, many properties being invariant
upon all different kinds of physical properties : the truth of 3 + 3 = 6

does not depend on marbles, sweets or steps.

Fractions and ratios are tightly connected with physical objects and
could be viewed'aa ways of conceptualizing the physical rud social world
(think of sharing) Jjuat as weil aa mathematical concepts. It 18 through
high-level sbatraction that the concept of rational number develops, also
through the synthesis of different properties of fractions and ratios
(Vergnaud, 1983, Kieren, 1987), namely operators, quantities or megnitudes,
scalar relationshipa, mappings and rates.

At nearly all levels, there are specific mathematical activities,as many
activities concerning number are independant of the physical context,

but mathematics is rooted in physics. This ia true even for high-level
mathematical concepts, who would have never come to birth 1if physics had
not raised new problems : think of vector-gpaces, of differentianl equa-
tions and calculus. There 1Is some research work in France, at the Univer-
sity level, examplifying the collaboration of physicists and mathema-
ticians, that show the profit students can draw from a better connection

between matuematica and physics.

0f course there are also some strong specificities of mathematics. The 1r-
rational character of the measure of the diagonal of squares of side 1

or n, is a purely mathematical diacovery, although its meaning is rooted
in the study of space and measure. Also the fact that the sum of twc

successive uneven numbers 1s a multiple of 4 :

(2n + 1) + (Zn # 1 + 2) = 4n + 4 = 4 (n + 1)

O
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Abstraction f{rom action is as assential in physics as in mathematics :

think of movement, speed, mass, density.

But 1 would like to point at three different aspects of abstraction :
-~ invariance of schemes

- tool-object dialectics
- role of symbols.

Invariance of schemes : The fact that the same scheme, or sub-scheme,

operates on different situations, 1s an escentizl way of recognizing

invariant propeities and relationships,and reliea upon this recognition.

Tool-object dialectics : (see Douady, 1985) a new concept is at first

a tool to identify invariants and work out operational schemes. Working
with objects of any level children discover (or construct) some of their
properties and relationships : these are tools. But such properties and
relationships can in their turn be considered as objects, having their
own properties and own relationships with other objects. Our represen-—
tation of the world is made of different~level objects. This is true for
all sclences, but especially in mathema® ics : number is first a tool to
compare, add and substract, it becomes an object quite rapidly, although
not with all its properties. Operations &re first tools, they become
objects., The same 1s true for functions and variables, for peometrical
transformations. Transforming tools into obJects is an essential way

of conceptualizing the world.

Role of symbols : natural language, schemas and other mathematical symbols
play a crucial part in this process of transforming cognitive tools into
objects, as symbolizing 1s a way of cutting invariants out of thelr con-
texts. It 1s also a way to point at them and discuss about them with

other persons.
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Actually a concept is not a concept until it has a name and one or

several symbolic representations : lingistic symbols are a necessary

means for communicating and debating about a concept with other people :
about what it is (definition) and what its properties are (theorems).
Communicstion and debate with others are crucial in the development of
concepts, This is why 1t is important that students work together, also

why teaching interviews are a powerful method,

But one must never forget that concepts are rooted in the experience of
students with different kinds of situations, and in the schemes they
use to dea% with theae aituations. Before being objects, concepts are
cogaitive tools ; and many theorems had better be theorems-en-action
before being explicit theorems, especially at the primary and early

secondary level : if not before, st least immediately after.

The social character of learning, discovering and constructing does not
concern the symbolic aspects of communication only, it also concerns the
cooperation of different students on the same task, problem or situation.
A natural language problem is not a story and does not have to be ana-
lysed as a story, it is a way of refering to a situation : natural lan-
puage is a way to convey referents : objecta, properties, numbers. The
analysis of natural language problems 18, first of all, a mathematical
one. The cognitive task for students facing natural language problems
includes understanding words (relationships, quantifiers...), but their
understanding depends heavily on the mathemetical tools by which they
can make sense of this sequence of words and represent it to themselves

as a situation and & problem to be solved.

Teachexs wust explain a lot, and show a lot. But it is algso their burden
to choose good situations, a large variety of them, and to understand
clearly which properties of the concepts involved are necessary for

students to make sense of each of these situations.
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Didactic situations play many different parts In teaching : help students

develop new invariants and schemes, train and confort their existing

skills, contradict wrong or narrow conceptions. Concrete and dbstract

are all relative concepts, as what s abstract at one age, may be

very concrete and as real as a wood table a few years later. '"Concrete"
conveys mainly the idea that teaching situations should make meaningful
a new concept, This is true at all levels, and in many different ways.
As the choice of these situations cannot be made without reference to
mathematics as a scilence, and to the developmental process of ma-
themat ical échbmes and concepts in students' minds, I see constructivism
as the best way to consider the preccess of appropriation by which a
student makes mathematics his own knowledge. Rather than a pure and
lonely construction, the learning of mathematics 1s for me the difficult

approp;riation of a social knowledge.

An individual's knowledge 1is necessarily bis own business and his own
part is crucial. But there arc so many social and physical Incentives
and feed-backs in the learning process that individuals never think,
exacpt when they are radical censtructivists, that thelr knowledge Is

totally different from cther individuals' knowledge.

This is not pure {llusion, or sclence does not exist.
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THE WORLD OF MATHEMATICS: ODREAM, MYTH OR REALITY?

David Wheeler, Concordia University, Montreal

At the PME-NA meeting at Michigan State University last October, Gaea
Leinhardt remarked that it seemed to her that people who began state-
ments with the phrase, “Speaking as a constructivist®, felt able to
complete their sentences in arbitrary ways. The suspicion that
constructivism is too opaque to serve as a framework for enquiry was
strongly voiced by Jill Larkin at the meeting of the NCTM Research
Agenda Project at the University of Georgia in March. Plenty of
mathematics educators have similar reservations. Yet constructivism is
in fashion in mathematics education research circles. It is so fashion-
able, indeed, that it has laid claim to several precious plenary hours
at this crowded conference. 1 hope the outcome of this extensive
attention will not be seen as an endorsement of fashion but as a
recommendation to subject all references to constructivism to critical
scrutiny and to refrain from adding to the loose talk. Our efforis may
be useful to the extent that they help (in Yeats' phrase) to purify the
language of the tribe.

Before looking very specifically at the papers by Sinclair and Kilpatrick*,
1 want first to set up some divisions in the reference field, in the
contexts within which constructivism appears. They occurred to me
during my first conscious attempts to think about my views on construct-
ivism when | wondered what,if any, was the connection between construct-
ivism in mathematics and constructivism in mathematics education. This
also leads into a subsidiary question about whether mathematics and
mathematics education have some special feature that favours consider-
ation of the constructivism option. A second clutch of questions came
to me because 1 found myself agreeing with some of the propositions some
constructivists were making while disagreeing strongly with other
propositions from the same people. Arrogant enough to suppose that I
already knew what 1 know about mathematical activity and learning, 1
thought there was a possibility that some constructivists had managed

to mix some independent systems of propositions together.

*Which 1 have read in first draft only.
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The divisions 1 will make are between constructivism as a philosophy of

mathematics

- psychology, particularly the psychology of learning
- philosophy, particularly ontological questions
education

Constructivism in mathematics educatio~ is likely to feed on some or all
of the above.

Although [ include philosophy as one of the contexts, constructivism in
any of the contexts is itself a philosophy. It is not a theory because
1t is not formulated in terms that could lead to refutation. At the
heart of discussions about constructivism is the difficulty that its
espousal and its rejection are more products of taste than of evidence.

Having laid out this challenging conspectus, 1 find myself incompetent
here and now to make sensible observations about each part of the whole
picture. 1 make some brief remarks under each heading: at least this
will indicate how much still remains to be understood.

Constructivism and mathematics

There are two strands he*e, one fairly general and the other special and
technical., The general strand is characterized by the classic question:
is mathematics invented or discovered? This is often interpreted as a
straight choice between the platonist and constructivist positions, but
there are other options available that may answer the question: how
does mathematics come into being? The empiricist position that treats
mathematics as much like any other science, argued by Locke and recently
reviewed by Kitcher, probably does not have many adherents, but there
seems to be growing acknowledgement of the influence of social forces,
as in the anthropological views of L.A. White and their elaboration by
R.L. Wilder. There are other positions, and in any case enough
alternatives to make it possible to answer "Neither" to our classic
question.

A better answer may be "Both". The platonist-constructivist dichotomy
puts us in the position either of denying that we “ave any choice in the
directions in which mathematics develops or of denying that the inner
coherence of mathematics ever takes us in directions different from
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those we intended to follow. Both denials are contrary to well-documented
aspects of the mathematical experience.

Constructivism in its more specialized sense begins at the end of the
19th century with Kronecker's objections to the analytic methods of
Weierstrass and Cantor. In the 1920's Brouwer tried to recreate
analysis on non-set theoretic foundations, and more recently Bishop has
begun the hard task of "constructing" constructive proofs of the
important theorems of the calculus.

The intuitionist programme, as Brouwer called it, is based on attractive
assumptions, but it makes doing mathematics extremely difficult since

it denies mathematicians some of their most powerful tools. The
programme is strong on internal coherence but very weak on external
referents. Goodman remarks that Brouwer's mathematics is dream-like.
“In a dream ... there are no errors. Everything is arbitrary, and so
everything is correct. (Goodman, 1983)

Constructivism and psychology

The psychology of perception has always been dominated by constructivist
philosophy. Most psychologists would agree that “our seemingly unified
view of the world around us is really only a plausible hypothesis on
the basis of fragmentary evidence." (Blakemore, 1973} The recent
adoption by psychology of computational metaphors, in information
processing and cognitive science, which might be expected to favour
mechanistic explanations of other kinds of psychological phenomena in
fact do not. "“These psychologists agree that thought and behaviour
must be conceptualized as meaningful action on the part of a subjective
agent rather than a causal process in a natural world." (Boden, 1979)
In psychology, it seems, we are all constructivists now. And hence the
exalted place that theories of representation are beginning to occupy.

Theories of representation often seem unable to tell whether the thing
represented is present to the senses or not, yet most of the time we
have no difficulty in knowing whether what is in our mind correspends

to something that is present or is an image evoked in the thing's
absence. Theories of representation alsc postulate certain a priori
powers of the mind or the brain that enable us to select invariants from
the flux of sensory data - as the baby, for example, recognizes his
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mother although the constellation of energy impacts on his sensory
receptors from the photons rcflected by ner face and body is different
at each moment. (There are, of course, other means for him to know her,
but similar observations apply to these as well.) The latter assumption
seems potentially much better adapted to dealing with our movement
through an ever-changing world.

Constructivism and philosophy

Rather than outline here the standard philosophical positions on
constructivism versus the other isms, I want to say that philosophers of
mathematics should take more note of Piaget's work. This also puts
Pisget in the right place. “Genetic epistemology is essentially an
experimental philosophy which seeks to answer epistemological questions
through the developmental study of the child." (Elkind, 1968)

Piaget's contribution to the philosophy of mathematics lies in his
explanation of the phenomenon of mcthematical evidence, i.e. the
«vidence on which mathematical theories and knowledge can be based

{the "fundamental criterion of demonstrative force", in Beth's phrase).

"Piaget takes a decisive step ... by observing (not positing) that
evidence develops in parallel with the emergence of mathematical
"structures", that is, with the recognition of abstract relations
independently of the particular "objects" between wnich the relations
hold. Evidence matures with the progressive acquisition of structures,
with the increasing objectification of the components of these structhre&
with the growing awareness of the automony of the operations performed
on these corponents relative to the particular "objects” which at first
are considered to constitute them, these "objects" themselves being
structures already previously elaborated at a lower level of conceptual
organization. Definite acquisition of evidence ... is associated with

completion, or "closure", of the corresponding structure." {Castonguay,
1972)

It is particularly interesting to notice how Piaget avoids the naive
platonism of Thom ("mathematical structures exist independentiy of the
human mind that thinks them" (Thom, 1971) and yet can agree with Thom
that "the important mathematical structures {(algebraic, topological)
appear as data fundamentally imposed by the external world." (Piaget,1970)
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In Piaget's constructivism, meaning is cumulative and the evolution of
mathematical structures is towards increasing comprehensiveness and
rigor. Logico-mathematical structures build on those that came before,
.ntegratina then while overcoming their inadequacies. Mathematics
therefore moves towards increasing objectivity - which Piaget understands
as a process and not as a state.

Constructivism and education

The institutionalization of education leads to a necessary abstraction
and formalization of knowledge. Whereas in an apprenticeship the
knowledge that is dealt with is normally immediately useable and closely
related to the specific intentions of the learner, knowledge in the
context of schooling has to be organized and generalized so that it can
serve the needs of students with widely different origins and widely
different goals. This objective knowfedge. while powerful and so
potentially liberating, is also regrettably depersonalised and deperson-
alising. The individual student is offered the chance to appropriate
this knowledge but is not given the chance to shape it.

In this situation it is particularly important ta recognize that the
students also need to see themselves as originators and modifiers of
knowledge. Only this awareness can save them from alienation and only
this experience can give them a basis for shifting their attention in
all their school subjects from what is correct to what is true.
Independently, then, of the above arguments, one can argue on educational
and moral grounds that schooling should include some component designed
to involve the students in the generation - the construction - of their
personal knowledge.

Comments on Hermine Sinclair's paper

The most stimulating section of the paper for me is the centre portion
where the writer presents Piaget's concept of normative facts and his
hypothesis concerning the instruments of knowledge. I'm stimulated
because the two ideas are new to me, both are expressed briefly so that
I am not sure I have grasped their meaning, and both make my intuition
sit up and say, "Something is wrong here!" Without reading the original
sources and reflecting at length on them 1 cannot have anything very
cogent to say, so I will just ask a question conce%ning the -~cond of
these ideas. How is it possible to make a comparison of two objects or
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two situations without employing an action scheme (turning the head
from one to the other, moving one thing next to the other, placing one
on top of the other, crouching so as to view them in line, or whatever)
which brings about a transformation the instant it is applied? Are not
the comparison and transformation processes necessarily coordinated and
simultaneous since neither can (logically) happen without the other?

In the special case of objects or situations judged to be equivalent the
coordination of the happenings seems clear. Since no two distinct
objects or situations are identical (i.e. have completely identical
properties), a judgement of equivalence must involve the awareness that
there is some transformation which will carry one into the other. The
judgement of difference, while a little more difficult to analyze, must,
1 think, work in essentially the same way. Perhaps the c¢elay to which
Piaget refers is not a delay in the events but a lag time between the
subject's knowing what to do and knowing what it was that he did.

1 am glad that Mme Sinclair, following Piaget, takes care not to fall
into the solipsist position of supposing that because the world cannot
be completely and absolutely known it cannot be kn>wn at all (and so
may not even be there). Indeed, as I have indicated earlier, Piaget has
given us one of the most convincing accounts to date of how the
subjective intelligence comes to know the objective world. It is true
that one “can never reach the object itself", that we are in a state of
ignorance that can be modified but not essentially reduced (for the
more we come to know, the more we find there is to know ...). Knowledge
and ignorance are complementary not incompatible. Human beings strive
to know, they thrive on knowing, yet remain in a condition of
irreducible ignorance.

To say, as some radical constructivists seem to, that we cannot know
anything that goes on outside our own heads is solipsism - a position
that may be fair enough in church, great fun in academia, but intoler-
ably irresponsible in connection with, let us say, medicine, politics,
or education.

A few words about the three questions.

1) What are the actions "destined to become interiorized as operations'?
Counting, of course, is anything but a primitive action scheme in spite
of its being mastered at the beginning of formal schooling. It already
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contains in coordinated form several action schemes that will later
become independent operations that will have nothing to do with
counting. The linear permutation of a set of objects will become a
mathematical operation long after its emergence within the counting
process where one of the most important discoveries that children make

is that the cardinal of a set is invariant for different orderings of
the set.

When permutations become the subject of attention, the mathematical
operation of interchanging becomes imcortant (since certain permutations
can be composed of a succession of interchanges). The origin of this
quite wimple operation may be found in the earliest years of childhood,
in action schemes in which two objects are picked up, one to each hand,
put down, picked up again, but each now in the other hand, and so on.
The temporal gap here between the action scheme and the operation - or
at least the operation in conscious use - is very great: a slow
construction indeed!

It may be worth considering the possibility that in this case, as in a
number of others, the time lag is not only a function of the difficulties
that have to be overcome before the operation can become operational.
Counting and adding are brought to children's attention very early
mainly because certain social criteria say that this knowledge is
important and fundamental enough to be mastered as soon as possible.
Society cares a great deal less about the mastery of permutation, sO
some mathematical operations which are at least 3s easy to master as
those involved in learning to count and to add are not detached from
their originating action schemes and objectified into autonomous
operations until much later, It is my suggestion, which 1 admit is not
very Piagetian in spirit, that children do not interiorize operations
until they need to, for whatever reason, and that sometimes thts reason
will be that the operations are required for the mathematical curriculum
and for nothing more.

2) Piaget's compounding of logic and mathematics reflects, 1 think, the
relatively narrow range of his mathematical interest. He is really not
at all interested in what people use mathematics for, or why they have
daveloped this extensive repertoire of skilis and concepts and theorems.
He doesn't show much awareness of mathematics as an activity, as
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something to do as well as something to know. He has decided to try to
identify in the actions of children the steps they take in getting to
the point where they know, say, number cr area as well as a mathematician
does. So he focuses on the epistemological foundations of these
sophisticated ideas, and in order to know what mathematicians say about
them he talks to the only mathematicians who have given the matters

any theught, and these turn out to be philosophers or logicians, and
sometimes both, e.g. Beth.

There may be another reason why "mathematics" carries the “logico"
prefix. Taking the example of simple whole number addition and
subtraction, for instance, we see that the mathematician will be more
interested in the properties that distinguish the operations from each
other - that addition is associative, say, while subtraction is not -
while the logician will be more interested in their interdependence.
For the logician, addition and subtraction entail each other and are
therefore logically equivalent. An addition which cannot be "undone"
- e.g. the addition of two raindrops - is not a mathematical addition.
It is an essential ingredient of the meaning of mathematical addition
that subtraction should be possibie. And vice-versa. In such ways the
logician's insights contribute to the epistemology of mathematical
concepts.

3) The educational importance of discussion, argumentation and
collaboration is undeniable but does not, I think, have more than a
marginal influence on the development of objectivity. The definition
that Piaget gives here seems to me to give only a weak meaning to
objectivity, viz. approval by others. I cannot help thinking of
Copernicus battling it out with a roomful of priests. There is, 1 am
sure, a stronger sense of objective that doesn't depend on anyone's
good fortune in finding someone else who agrees.

The final section of Hermine Sinclair's paper takes me out of my depth,
although I like what she says. Story problems really are such extra-
cerdinary things! They are pedagogical devices, that is clear (since
they are not a part of mathematics nor a part of experience cutside
school), but devices for doing what? If their goal is to link
mathematics to everyday experience, then they go about it in the
clumsiest way imaginable. They interpose between the two things they
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are intended to link, something else, the "story", which rather than
facilitating the application ot some simple mathematics to some simple
problems, introduces considerable additional interpretative difficulty.
The problem of a story problem 1s not the mathematical problem but the
problem of deciding what the mathematical problem actually is - a
difficulty that never arises in a genuine problem situation. What is
more, these stories bear superficial resemblances to events in everyone's
experience, yet the solution of the problem is not & matter of moment

to anyone fnvolved. not even the characters in the story. It seens
worth considering what children learn from exposure to things called
problems which no one needs to solve, from stories which (as Mme Sinclair
remarks) don't tell anything, and from tasks which seem designed to
conceal rather than reveal what cn2 is supposed to do. Over the school-
room door we might as well wriie, "“Alienation begins here!"

Comments on Jeremy Kilpatrick's paper

There are some observations that 1 hardly need to make. The most
obvious is that I share Jeremy Kilpatrick's wary and cautious approach
to constructivism, especially the radical variety. What will beccme
obvious is that | have not studied all the sources to which he refers
and 1 will be responding to his use of the sources, not to the sources
themselves (some of them not yet in the public domain).

1ne opening of the paper makes me ask what 1t is about constructivism
that has made some mathematics educators into such passionate converts
and many more into fellow-travellers. There 1s an undoubted appeal
about the approach in spite of what seems (to me) to be basic incoher-
ences in its belief system and 1n spite of the fact that there 1s no
evidence (to my eyes) that the theory has necessary consequences for
educational practice. 1 hazard that the attraction resides in such
features as:

i) the tneory is generous in its estimate of students' powers,
making it seem humane and potentially humanizing; students are
seen as in active control of their own learning, not picturad
as greedy pigeons nor as attentive bhut passive listeners;

1) the theory is realistic about the (generally) out-of-synch
process of lecturing and of schoolroom “presentations"; it
makes it clear that teaching in the "telling mode" is not only
undesirable because 1t is authoritarian but also ineffective

O
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because it cannot possibly produce any consensus in the students'
responses to it;

iii) the theory seems to hold out the possibility of realizing the
classic instructional maxims: ‘“start from where the student is",
and "do not try to do the student's learning for him";

iv) the theory resonates with personal experiences that frequently
show us to ourselves as engaged in the activity of making sense of
the things we encounter, making “an effert after meaning” in
Bartlett's words, demystifying some of the random and arbitrary-
seeming significations that surround us.

Readers will be able to note other factors that contribute to the
appeal of constructivism. If it is this and more, how can it possibly
be resisted? )
Constructivism, however, as Jeremy Kilpatrick says, needs to improve its
connection to educational reality. Formal education includes elements
of prescription if society is to have a say in what is learned in
schools. It was a weakness of the progressive movement of the 1930's
that it was never quite courageous enough to face down the dilemma

posed by a curriculum, any curriculum. Being an educator or being a
teacher may be, in part, to have accepted the responsibility of seeing
that students learn what society wants them to learn. Some of the
progressives hoped that students would eventually realize for themselves
that it would be in their own interest to learn to read, to qualify for
a certificate, to graduate - i.e. to do what society wanted: to
volunteer, as it were, to follow the curriculum that for ideological
reasons could not be imposed. Some progressives were not above trying
to achieve these ends by manipulation, consciously or unconsciously.

Straightforward instruction stripped of rewards and punishments is at
least not manipulative, and | would rather give students direct
instruction than to try to “qguide their learning" or "attempt to modify
their cognitive structures" (to quote from von Glaserfeld's "five
consequences"), both of which smack to me of manipulation. How difficult
it is to discuss this matter without a very much clearer idea of exactly
what pedagogical techniques are used to pursue these ends!

Finally, a remark about the Bavelas experiment. This kind of phenomenon,
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which might be called the exclusion of the random or the rejection of
the arbitrary. is quite well known {some experiments in the early
1960's brought it to my attention). 1 suggest the example bears to a
theory of constructivism about the same relation as examples of visual
illusions bear to a theory of visual perception - that is, there is a
connection, but only "at the edges®. I don't think the fact that, say,
some punters make their living at the track 1s clinthing evidence for
the radical constructivist case.

Conclusion

Mathematics invites the attention of constructivists because it has no
external referents. There is aothing we can puint to, even in a
figurative sense, and say that mathematics is about "that", or is the
study of “those". People at all times, from the Pythagoreans onwards
if not before, have spun stories to establish what mathematics is
about. Whereas it is possible Lo revise and improve, say, the stories
that comprise Aristotelean physics by undertaking some critical
experiments to refute one or more of its tenets, no one can subject the
stories that make up mathematical platonism or mathematical empiricism
or mathematical constructivism to the test of critical experiments.
The propositions within each framework are testable but not the frame-
vorks themselves. Perhaps, then, we should choose whichever stories,
which of the availab'e myths, happen to suit us best.

| dislike leaving my story at that point, though I am unable to see
what else 1 can usefully say. Perhaps just this. Myths are OK when
we know that is what they are, but myths that get taken for reality,
not as stories about reality, are potentially dangerous. The perverse
and impoverished platonism which 15 the traditional school -based myth
about mathematics has poisoned minds and destroyed confidence on a
large scale. Are we quite sure that our more sophisticated myths are
really less harmful? In the last resort [ dislike and distrust radical
constructivism applied to mathematics education because it denies
students access to any independent path to knowledge and to truth and
so gives teachers power over what students learn that I know some will
abuse.

. 98
BEST COPY AVAILABLE




[E

O

- 66 -

REFERENCES

Beth, E.W. and Piaget, J. (1961) Epistémologie mathématique et
psychologie. Paris: Presses Universitaires de France. Tr. by W. Mays

as Mathematical psychology and epistemology. New York: Gordon and
Breach, 1966

Blakemore, C. (1973) Environmental constraints on development in the
visual system. In: R.A.Hinde and J. Stevenson-Hinde (eds.)
Constraints on learning. New York: Academic Press

Boden, M.A. (1979) The computational metaphor in psychology. In: N.
Bolton (ed.) Philosophical problems in psychology. New York: Methuen

Castonguay, C. (1972) Meaning and existence in mathematics. New York:
Springer-Verlag

Dummett, M. (1959) wWittgenstein's philosophy of mathematics.
Philosophical Review, LXVIil, pp. 324-48

Elkind, D. (1967) Editor's introduction. In: J. Piaget, Six
psychological studies. New York: Random House

Gocdman, N. (1983) Reflections on Bishop's philosophy of mathematics.
Mathematical Intelligencer, 5, 3, pp. 61-68

Kitcher, P. (1983) The nature of mathematical knowledge. New York:
Oxford University Press

Piaget, J. (1970) Genetic epistemology. New York: Columbia
University Press

Still, A. (1979) Perception and representation. In: N. Bolton (ed.)
Philosophical problems in psychology. New York: Methuen

Tahta, D.G. (1986) 1In Calypso's arms. For ihe Learning of Mathematics,
6, 1, pp. 17-23

Thom, R. (1971} Modern mathcmatics: an educational and philosophical
error? American Scientist, 59, pp. 695-699

White, L.A. (1949) The locus of mathematical reality. Chapter 10 of
The science of culture: a study of man and civilization. New York:

Farrar, Strauss

Wilder, R.L. Mathematics as a cultural system. New York: Pergamon
Press

RIC 99

Aruitoxt provided by Eic:




[

COMMENTED
PAPERS

]

160




Affective factars
in
mathematics learning

101

ERIC

Full Tt Provided by ERIC.




ERI

O

...7]..

CHILDREN'S  IDEAS  ABOUT WHAT IS REALLY TRUE IN FOUR CURRICULUN
SUBJECTS: MATHEMATICS, BCIENCE, HISTORY AND RELIBION

Joan Bliss, H. N, 8Bakonidis
Centre +¢or Educational Studies,
King's College London (KQC), Univereity of London

ABSTRACT

Pupils 1deas about whether what they learn in
mathematics, science, history and religion 15 really true
were investigated in two urban secondary schools Pupils
were given a questionnaire and asked to make a judgment
about the truth of a subject and to justify it. Analysis
showed that mathematics and science have a similar
profile in the two schools, both subjects being
considered by the wmajority as “true® in all years,
Judgments about history changed in ane school with age
and remained stable in the other. whereas religion does
not give an easily recognisable pattern. Oualitative
analysis provided categuries: nature of subject, relation
between theory/practice, evidence through proaf,
constuctivisa, pragmatism and authority vt teacher.
Evidence through empirical proof was the most popular
category of explanation in both schools.

INYROOUCTION

In the Jast few years great interest has been shown 1n the
relationship between the teaching of a subject and the philosophical
\deas which are held by teachers about that subject. This arose fronm
the recoqnition that teachers’ beliefs about their discipline and hnw

pupils perceive it are somehow linied.

Teachiers develop strategies to cope with a wWide ranae of classroonm
situations and these strategies are a result of conscious or
unconscious notions, preferences, attitudes, teliefs, and what remains
of their ‘"education®. Brown and Cooney (1982) suagest that these
strateqies shape a teacher’'s behaviour and constitute a sort of
“theoretical state" which more or less defines the way 1n »hich they

teach. Thus 1t 15 reasonable to exzpect that teachers’ views of the
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subject and their instructional practice could be sigmificant in

influencing pupils’ attitudes towards the subject.

There is not the space to develop the various philosophical views of
mathemataics, science or history. Suffice to say that sany
rathematicirans will have heard of ideas such as Flatonism and
“pre-extsting structures*, Logicism and the reductron of wmathematics
to a number of logical concepts, to Espiricism where knowledge comes
from experience, or Constructivisam where aathematics is seen as a
construction of man. Similar analyses can be wade for Science and
History but this 1is for a longer paper. So, the goal of this study
was to see how pupils perceived the various school subjects, and

whether or not they actually believed them to be true.
HETHOO

A questionnaire was given out 1n two schools. School A was an 1nner
city single sex independent school, School B was an inner city mixed
:omprehensive school. Pupils 1n the samplm were taken in Scliool A
from the first, second, third and four year {(covering ages Il -15) and
in School D, frnm the first, third and fifth vyear ( §1-168), The
questionnaire read as follows: WHAT DO YOU THINK?

de would all like to know what is really true (well, wmost of us) What
dJo you think about whether these subjects tell vou thinos that are
really true? -what you learn about science, what vyour learn about
religion, what you learn about history, what vyou learn about
1athetmatics. Say what you think here: (choose ane for each of the
following subjects) SCIENCE TRUE because .....00

NHOT REALLY TRUE  because ....

CAN'T DECIDE because.... Similarly
for Matheeatics, Religion and History.

RESULTS

Ihe least comple: model worth testing is that of yndependence of age
ind Judgment in GLIM or (equivalently) In alpha =8 uniformly across the

table (Ogaorn 1983). This model was fitted, 1n turn %o the data for

O
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each subject areas, and {for the schools A and B as ohown 1n tables |
and 2 tgiven belowt. When the mode! of no interaction was rejected,
best titting values for wuniform In alpha were found and titted. The
results were as follows:
MATHEMATIC8: School A 6 = &.2 d.f. 6 p.= B.40
School 6 6" = 0.5 d.f. 4 p.x B.96

For school A 1t 16 a good f1t, and for school B 1t 1s a more than
excellent f1t so 1n both cases the aodel cannot be rejected, thus there
1s no association between age and judgment.

SCIENCE: School A 6 = 6.2 dob. & p.= 0.40

School B gt = 2.7 dot. & p.xzB.60
The fit 1n both cases 15 good so the sodel cannot be rejected thus
again there 15 no association between age and judgment,

HISTORY School A 6 = 1@ d.f.6 psB.10

School B 6 = 5.5 d.f.4 ped.25
The +$1t +4or school B 1s a +fairly good 41t and so the node!
cannot be rejected, thus no association hetween Judgment and age. In
the case of school A while the $1t 1s far from good, 1t 15 close to
being acceptable. In this case the best fitting unifore ln alpha,
value Q.6, was f1tted and this gave a dl= 5.4 d.f 5, po 0.4 which 1% a
gpood $1t, although the strength of association 1s not very ;trong‘ thus
1n school A there would seem to be some development of children’s
Judgments.,
RELIGION School A 6" = 6.6 d.f. & p.z 2,01

School B 6" = 30.1 d.. 4 p. (2.081
In the case of school A the f1t wae not good, for school B it was
extremely poor, so 1n both cases the model of no interaction can be
rejected. The best fi1tting uniform In alpha, value @.4 was fitted
to data for school A, giving 6% = 13.7 d.f.5 p.<0.82, this is stiil

not a good fit. There 1s a negative development for school 8.

Summarising, aathematics and science show similar trends with the
majority of children judging thea both to be “true® throughout all the

sars of school. For history in school A, there 15 a change n
judgments over the years but with school B the judgments stay the cane.
Religion for school A would have a similar picture to mathemsatics and
science 1§ there were no an unexpected increase 1n frequency of truth

judgments ftor third years. Ia school B, “not really true” Judgments
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increase and  “true® judgments decrease with age.

TABLE 1. SCHOOL A, JUDGEMENTS ABOUT TRUTH OF SUBJECT

HATHEMATICS SCLENCE

NRT D 1 NRT co T
Ist N =49 2% (1) 141 (7) BAL (41 6% (3) 237 (11) /1% (35)
nd N =44 7% (3) 9% (&) 8L (37) 7% (3) 18% ( 8) 75% (33)
3rd N =33 3% (1} 91 (3) BBY% (29 @ 9%  3) 91% (30}
4th N =25 @ 8% () 12% (1 ] 20% (8 T6% (1)
Total 33 (5) 14% (21) B3%L(125) A% (6)  19% (2B) 77X(117)

HISTORY RELIGION

NRT co 1 NKT co T

1st N 249 28% (14) 33% (16) 39% (19 S7% (28) 1% (28) 2% |
2nd % =44 187 ( B) 4BZ (21) 34% (15) 1% (18) S8% (27) 9% (&)
3rd N =33 12% (&) 421 (14) 46% (15) 0% (10) 43% (14) 27% ( 9)
4th N =25 16% ¢ &) 28% ( S) 64% (16) S2% (13) 44% (11) 4% (1
Total 207 (3Q) 377 156) 43% (65) 46% (69) 44% (671 10% (15)
TABLE 2. BCHOGL B, JUDBMENTS ABOUT TRUTH DF SUBJECT
MATHEMATICS SCIENCE

NRT cb T NRT co 1
tst N =26 44 (1) 23% (&) 730 (19 @ 124 ¢ 3) 8B8% (23}
Ird N =23 4% (1) 17% L &) 797 (1B) @ 22% (S) 78% (18)
S5th N 228 8% ( 1) 257 (5 70% (14) 5 (1) 254 ( S) 70% (14}
Total: AL (03) 22% (15) 741 (S51) 1% (1) 19% (13) B@Y% (55)

HISTORY RELIGION

NRT )] 1 NRT co T

Ist N =26 @ 27% 0 7) 734 (19) 157 C 4) 27% (7 sB% (%)

3rd N =23 174 (&) 22%  ( 5) 61% (14) S5A% (13) ABL ( 9) &% (1)
Sth N =20 5% C 1) 15% (30 88% (16)  78% (14) 307 ¢ &) @
Total: TR0 %) 220 (15) 71U (49)  ASEL (31) 327 (22) 23% (14)

=

COMPARIBUNE BETWEEN SUBJELTS

In order to understand better the relationships between subjects
S1% COMPArisons were msade between: sathematics and science;
mathematics and history; wathesatics and religion: sciente and
history; science and religion; history and religion.The scoring was

as follows: X truer than Y (or equal) aqives three possible scores:
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%y truer than VY: score of | for X
Both Gubjects equally true: ocare of 1 focr equality

X less true than Y3 score of § for Y

Tables of Cco@parisons were constituted and F aodel of no
ynteraction fitted to each but the commentary will be restricted
to cosparisons 1nvelving aathematics (totals and statistrce  are
given below) As might be expected, apart froe the $irst year, the
profiles of the cosparisons between judgments about sathematics
and science do not change over the yevars of secondary school, The
same 1% true for mathematics and history but for all four years of
secondary schooliny. The §1t 14 less good but still adequate for

cosparisons of judgaents about sathematics and religion, because of

an increased nusber of "true® judgments for religioen in the third

year.

TABLE 3+ COMPARIGONS OF JUDBRENTH OF SUBJECTS
d.f.6 Haths-equal-Science Waths-equal “Hist. Haths- aqual- rel1g.

Wwinsg Wins WiRS “ing Wwins wing
Totals 26 104 24 76 62 13 127 20 A
ter.8 pad.30 @ s A.8p0.60 O 0.6 P .15
Scrence- equal-Hist. Sc1ence-equal-kelAq.Hlst.-equal-relig.
®wins wing Wins winsg Wwins HiNG
Totals 76 53 22 104 18 9 8 48 22
& o 6.1 pag.ol G =4.0 pezd.60 2.8 pa0.95

Hathematics is now coapared with the other subjects an terns
ot 1ts overall chances of winning. First, when eathesatics and
science are compared, @ large sajority of children (6%%) tand
to see these sub)ecgs as  ‘“equally true"., Mathematics wins very
substantially nve} religion (BAY af the conparxsons). tor
sathematics and history the picture 1s not quite soO clear.
Matheratics wins 58% and history wins 9% of the cases but tar 417

uf the comparisons children perceive sathematics and mstory to be

equally true.
QUALITATIVE ANALYBIS 0F EXPLANATIONS AND CONCLUSIONS
O
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The majority at children atteaptoed q0me  eaplandtion for any
qiven judqment and quite a nuaber gave two. This section wy )
describe the categories for children's responses, indicate
frequencies of responses per cateqgory, The categories described
below refer aolely to the explanations for aathesatics and science,
an analysis of history and religion 1s in the process of being
carried out,

i, MNatur® of the wsublect Children perceive the subject to be
logical or coherent, and by definition true. (Soms children argued
that because the sublect was logical 1t was not necessarily true)
2. Relation betwsen theory and proof, Children perceive the
subject to be “true* because it s constantly trying to find, or
work on proof for 1ts theories,

3. Evidance through proof, There are three sub-cateqories in
this categoryr a. Children argue that "1t can be proved®, that is,
there is some very qeneral way of prooving the truth of the
subjact. b.Children specify that thare are formulaes or special
aethods of proving the subject true. c. Children arque that
experiaents can be done, or that when using the suhbject 1t tan be
shown that "1t works*, an “eapirical® tvype of proof.

4, Constructiviss. Children perceive the subject tu be true
because 1t 1s constructed, made-up, i1nvented by man, they often add
“intelligent" aen, this reason 1s sometimes used for lack of
veracyty.

3. Prageatism, Children perceive the subject to true either
because it 1s coamonsense and can be found out from ong’s own
experience or 1t used in the real world.

b. Authority of¢ the teacher The explanations in this category
simply state the subject is true because “the teacher told us/ee”,

As shown 1n  table 4 evidence through eapirical proot, that 1s, by
experiments or "because 1t works' 1s the most popular cateqory of
explanation 1n both schools. Also the outside categorv of authority
of the teacher 1s not all frequent 1n either school. for school A,
the nature of the subject, that 15, 1ts logical nature, and evidence
through general oproof. are the two next most popular categories.

The remaining four categories are all 10 a sistlar range of
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trequency of resoonse between 7% and 18%. In gchool B the second
aost popular cateqory Vo that of pragmatism, none 0f the
resaining cateyories exceed trequency of 12% ot the response and

Constructivism 1s the lowest with only 9% of the repanses.

TABLE 41 FREQUENCY OF CATEGORIES OF EXPLANATIONS

School A Schoo!l B

1. Nature of subject 16 % 8 %
2. Relation between theory and proo¢ a3 12 %
3. Evidence through proot

a. general 18 % [

b. through formulae, etc. 17 % 6 3%

c. empirical 29 % 304
A, Constructivism 9% 5 1
S, Pragmatism a 29 4
5, Authority of teacher 3% 4%

Concluding, children on the whole tend to sew mathematics as
strue* and similarly for science, their judgments not changing from
first to f1ith vear of yecondary school. Their reasons {ar their
pelipts are sainly to do with capirical proatt for mathematics, it
works* and for science, rpxperiaunts  work", The second most
papular set of explanations was gither the nature of the subject,
its “logicality", or. 1te prageatic nature. Constructivist reasons

appear hut very infrequently.
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VARIABLES INFLUENCING BEHAVIURAL SUCCESS AVOIDANCE
IN MATHEMATICS

Joanne Coutts and Lorraine Jackson
The University of Windsor

This study permitted asasurement of high and low
success avoidant 9th grade females based on post
teated observed mathematics performance data.
Analysis of Variance was conducted using trained
obsarver ratings and personality scale scoras.
Based on observed and nmeasured scores. this
investigation i1dentifiad significant personality
tralt differences on Defendence and Autonomy
betwvean high and low success avoldant females.
High success avoldant females scored 1low on
Defandence and Autonomy.In contrast to the high
success avoidant females. 1low success avoidant
females are salf-protective, self-rellant and
independent.
Introdquction
Horgan and Haugner (1973) and Mauvsner and Cubit
(1979} have developed a paradigm for studying the
degrea to which females (and males) nmight hold Dback
their ‘'performance 1in dyadic settings even under condi-
tions when the sasubject was clearly superior in ability.
Related to this paradigm is the gqueastion of what back-
ground factors and personality variables influence

fenales'’ behavioral success avoidance in mathenatics.

Parsonality Factors
Horner (1968, :969) and similar studies by Alper

(19713 . Lavach and Lanier (1975), and Romar (197%5)
have hypothesized a process involving motivation to

avoild or to he fearful of success. Although Horner re-

ports a variety of her own studies in support of female
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behavioral success avoidance, a number of questions
remairn in terms of differential socialization and in
terms oOf personality characteristics of fenales who
manifest avoidance

This research attempts to identify significant
underlying processes influencing success avoidarce in
mathematics. When ve began this research., we did
what many researchers do in the beginning steps of
exploring a research problen. e observed behavior
and asked questions. This study refiects our interest
in the basic psychology underlying the observations.,

Hethod

Sample

One hundred and twenty students. 60 males and 60
females, were drawn from district secondary schools.
These secondary school students were in grade 9 math-~

ematics classes.

Data Collection Instryments

The Perscnality Regearch Form E. This personality invent-
ory is designed to provide a set of scores for personality
traits widely relevant to the functioning of individuals
in a large number of situations. Forw E consisted of
twenty-two 16-item scales (Jackson, 1984). These scales
aay be dafined as personality variables. They are
1isted here alphabetically: Abasenment, Achievenent, Affil-
iation, Aggression, Autonomy. Change, Cognitive Structure,

Defendence ,Desirability,Doninance, Endurance, Exhibition,

110
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Harmavoidance. lnfrequency.lmpulsivity, Nurturance.Order.
Play, Sentience. Social Recognition, Succorance. and
Understanding.

Tha GCanadian Achievement Test. This achievament
test {(mathematics section,1981) consisted of 45 questions
which tested the sSubject's ability in problem-solving.
In addition., a revised form of this test also wvas
developed for use in the present atudy.

Brocedure

Subjects wvere tested in groups of 30 during
regularly scheduled classes. Subjects completed the
Canadian Achievenent Test (CAT) and the Personality
Research Forn E.

Prior to the second session. the Canadian Achieve-
nent Test (1981) was scored. Hixed mex dyads of unequal
ablility were formed on the basis of the group's median
score. When the subjects arrived at the second session.
they were given their score as weall as their
partner's score on the CAT.

in the second session. which took almost one houtr.
students vere asked to work cooperatively with
their partner on the revised form of the Canadian Math-
ematics Achievement Teut.

While the subjects were working, a trained
observer was present and evaluated each individual and
the dyad on a number of dinensions. Due to space
linitations, all diuwensinns will not be reported in

this paper.
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When the subjects' work was finished, they were

thanked for their participation and then debriefed.

Results

This atudy uses data from females who were
paired with nales according to mathematical ability from
two experimental groups. The firat group consisted of 28
dyads each containing a high ability female and a low
ability mnale. The second group consisted of 32 dyads
each containing a high ability male and a low ability
fenale. The median score based on these sub jects’
nathematical per formance data from the Canadian
Achievement Test, taken during the first part of the

atudy., deternined each s'bject's group membership.

Obgerver Ratings

Analysis of Variance was conducted using observers'
ratings as the independent variable and selected Person-—
ality Research Form scale acores as the dependent vari-
able. In particular, scores from observers' ratings,
taken during the second part of the study were analyzed.
Data from fenmales were used for this analysis. Obser -
vers' ratings of famales' behavioral success avoidance

were split at the median. Two groups were formed: Group

1 was defined as high success avoidant fenales and

Group 2 was defined as low success avoidant females.

Personality Scales

Analysis of the personality data revealed that

pe—a
Do
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on two of the Personality Research Form scales
(Defendence and Autonomy) there were significant differ-
ences batwveen femaules who were rated low success
avoidant &#nd those who were rated high success

avoidant by the trained observers.

Defendence Scale. The description of a high scorer
on the Darfendence Scale is as follows: Ready to defend
self against real or (imagined harm from other people.
Does not accept criticism readily. Fenales who were
rated as low success avoidant scored high on Defendence.
Low success avoidant fenales are self-protective.
Fenmales rated high success avolidant scored low on
Defendence. High success avoidant females are not self-
protective, F (1, 26) = 4,10, p>.0S. Thusa, significant
differences at the .05 level vere found between high

and low success avoidant females on Defendence.

Aytonoay Scaje. The description of a high scorer
on the Autonomy Scale is as follows: Tries to break away

from restrictionss self-reliant.independent. autononous.
Fenales who were rated as low success avoidant scored
high on Autonomy. Low success avoidant females are self-
reliant. Females who wvere rated as high success
avoidant 3cored 1low on Autonony. They are not self-
reliant, F (1, 26) = 4,37, p>.04. Thus, significant
differences at the .04 level were found between high and

low success avoidant fenmales on Autononmy.
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Conclusion

This study permitted initial evaluation of
personality variables in high and low success avoidant
females. There were significant differences in the per-
sonality tratits of high and low success avoidant females.
Differences are 4alsao anticipated for certain background
variables reflecting differential socialization in con-
formity with the above findings regarding personality.
Further analyses will De conducted and presented. Dis-—
cussion of additional analyses in relation to the

results given here will follow the PME-XI presentation.
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HEASURING BEHAVIORAL SUCCESS AVCIDANCE IN MATHEMATICS
IN DYADIC SETTINGS

Lorraine Jackson and Joanne Coutts
The Uraversity of Windsor

This study pairs one hundred and twenty 9th grade
nales and ferales in combinations of Ligh and low
pretested nmathematics performance. Analysis of
Yariancé was ccnducted using nathematics and
other performance data. This investigatjion per-
mitted an evaluaticn cf whether grevious
results of behavioral succeas avoidance {n high
ability females wculd cccur. Reduced scores of
high abillity females working with a lower mathe-
matics ability partner suggested deference tc the
male and behavioral suicess avoidance in the high
ability female.

Introduction

Women ‘s achievement behavior hLas become a topic of
1nterest to many resgearchers. In the last decade .,
there has been particular interest in women's math-
ematical achievement and in vomen's avoidance of
mathematical achievenment. Reference can be made to
excellent reaearch 1in such areas as sex differences in

mathematics and ability and 1n the mediating effect of

3€eX rcole orientation on mathematical performance.

Hathematicy and Achievement Motjivaticn

[t has been Jenerally agsumed., according to Maccoby
and Jacklin (1984), that male gstudents are more achieve-
ment oriented than female studenta. However . girls
generally achieve better grades than boys thrcughout
their school years. Girlas are alss reported at an

earller age as being more interested in  sachocl related
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skills. Acccrding tc deWolf (1981)., male students have
been found to do better on mathematical aptitude and
achievement tests becausé males have chosen to take more
mathematics relatad courses than female students. When
differential course taking has been taken 1ntc account
the sex differences disappeared (deWolf, 1981; Becker,
19823 Fennema, 1980; Pallaé and Alexander., 1983).

According to Maccoby and Jacklin (1974), although
males may be more achievement motivated under directly
competitive conditions than females, they do not appear
to have generally greater achievement motivaticn than
ferales. .

Interestingly, Spender (1982) reported that young
girls in elementary school indicated that they liked and
enjoyed mathematics. The boys. on the other hand. indica-
ted that they did not believe that girls could dc math-
ematics competently. Somewhere in adolescence the
attitudes of many females chaﬁge and girls begin tc
atate that they are not capable of doing mathematics.
Thas occurs when girls reach an age at which boys®
opinions are important to them. No doubt many socic-
cultural variables impact on females lowered self-regard
for the study of mathematics. Variables such as lack of
cultural reinforcements and few female mathematically
oriented role models appear to be highly influential
factors.

The negative attitudes that females have toward

Q .1
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mathematics is further revealed by high attrition rates
cf females in senicr level mathematics courses. Accord-
ing to Leder (1982), more females in grades 10 and 11
than males in the sane grades intended to discontinue
taking mathematics altogether, It was further revealed
that girls high in mathematics performance who continued
taking mathenatics seemed to experience an increase in
amount of anxiety as they went threugh school, According
to Becker (1982), sex typing of mathenmatics as a nmale
domain may inhibit female achievement and interest in
mathematics. It has been found by Swanson and Tj3osvold
(1979) and Morgan and Mauser (1973) that high ability
females cooperating with low ability males on a task,
when influenced by self kresentation and compliance
concerns. subsequently lowered their performance level,

It was with many cf these research studies in mind
that we began a research project which could examine
the mathematics performance or decrements in performance
in high ability females working cooperatively with low
ability mwales. In addition, incorporated into this
investigation was nathematics performance or decrements
in performance 1in high ability males working coop-

eratively with low ability fenales,

Methcd

1G]
o
3
—
1

One hundred and twenty students, &0 males and 60

females, were drawn from district secondary schocla.

O
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These secondary schocl 8tudents Wer= 1n grade 9 math-

ematice cCclasses.

Data Collection lnstruments

The Canadian Achievement Test . Trhis achlevement

test (mathematics section.l19€1) conaisted of 45 gquestions
which tested the sSubject's ability in problem-solving.
In addition, a revimed form of this test alsc was
Jdeveloped for wuse 1n  the present study. Attitudinal,
attributional and developmental instruments were alsc
administered in this atudy but these instruments will

not be reported in this paper.

Procedure

Subjects were tested in groups of 30 durinyg
regularly scheduled classes. Subjects completed the
canadian Achievement Test (CAT) and the other instruments,

Prior to the second sessicn. the Canadian Achieve-
ment Teat (1981) was scored, Hixed sex dyads of unequal
ability were formed on the basis of the group's median
acore. When the subjects arrived at the second session
they were given their Score ag well as their
partner's score on the CAT.

In the second session., which took almost one hour.
atudents were agked to work cooperatively with
their partner on the reviased form of the Canadian Hath-
ematics Achievement Test.

While the subjects Were working. they alsc Were

responsible for determining the following: (a) who had
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atarted thé problem: (L) who had contributed uhat
percentage to the problem-solving: and (c) who had
actualiy completed the problem. The procedure followed
by subjects was that of writing their names next to each
of the appropriate categories for each of the problems.
Whén the work was finished, subjects completed an
attributional questionnaire.

At the conclugion of the study. subjects were
thanked for their participation and then debriefed as
tc the nature of the (nvestigaticn.

Results

This study pairs males and females in twe
dyadic experimental groups: Croup 1. This gJgroup
ccnaisted of 28 dyads each centaining a high ability

female and a low ability nmale. Group 2. This

group  consisted of 32 dyads each ccntaihxng & high
ability male and a low ability female. The groupings
were determined on the use of the median score as a
cutting sgcore based on these subjects: performance daté
from the Canadian Achievement Test (mathematics section)
taken during the first part of the study. The Canadian

Achievement Test is alsc considered as an ability test.

Mathematical Performance

Analysis of Variance was carried out on the mathe-
matical performance dats from the aseceond part cf the
study. There was no overall Jdifference between the two

experimental grcoups {rn terms cf the actual number cf
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questicns angwered cerrectly . Both greups (Group 1
and 2) were e&jually effectaive an their mathematical
per fOrmance.

Closer 1nspection of the data with:in €ach group
revealed differences associated within each of the
three categorles related to problem-solving behavior.
Group 1. In terms of the number of times a sub ject
tnitiated problem-solving in Group 1., 1t waa found
that high ability females appeared to indicate that
they had 171tiated more problem solving than their low
abillty hale partners. £ (1, 54) = 3.34, p>.07. The

result was not significant at the .05 level.

High ability fenmales alge 1ndicated that they had offer-
ed @ higher precentage of help towards protulem-solving
than their low ability male partners, F (1, 54) = 11.07,
p?.0Cl. Thie result was highly signficant at the .001

level.

High abiltity females also appeared to indicate that they
had more frequently solved the problems than their low
ability male partners, F (1, 54 = 3.38, pr.07.

The result wags not afgnificant at the .05 level.

Group e 1n terms of the number of times & aubject
initiated problem-solving 1n Group =, 1t was found that
high ability males appeared teo 1ndicate that they had
initiated more problem solving than their low ability

female partrers, F (1, €2) = .86, Ppr.35. The reoult

<0
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dag hot argnifioant at the .05 level.

In reyard to who had offered a higher percentage of help
tocward the prokblew-solving, the hagh ability nales
indicated thot they had offered a greater percentage of
help than thetir low ability female partners, F (1. 62!
2 10.96, p>.001, This result was highly significant at

the CCl level.

Higher ability malcs alao indicated that they had solved
the problema more freguently than their low ability
female partners., F (i, 63&) = 11.%0, p» .0001. This

result was haghly significant at the .0001 level.

Conclusion

This atudy paire? a high ability female with a low
abllity male on the bLasis of pre-tested nathematics
performnance. This * study permitted an evaluation of
whether praevious results of bahaviorai success
avoldance in high ability females paired with low,
ability males 18 a function of Jefarence to the per-~
cerved “"dominant rcle" of the male. The reduced saccres
sbtatned by high ability females working with a lower
mathemat1cs ability partner suggests deference to the
*dominant rote" of the male and also sugyeats

behavioral success avoidance in high ability females.

{(D13cussion of this paper will fcllow after the PME-XI

presentation: .
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ANXIETY AND PERFORMANCE IN PRACTICAL MATHS AT TERTIARY LEVEL
: A REPORT OF RESEARCH IN PROGRESS

Jeffrey T. Evans
Middlesex Polytechnic, Enfield, U.K.

This is the chronicle of a study which aims to
study adults’ use of maths in various contexts,
and such barriers to this as ’maths anxiety’. One
particular interest was how maths anxiety is used
to explain women’s allegedly poorer performance.
Bedinning with the standard literature and

self-report questionnaires, I procduced soms
results, e.d. some ’truths’ about gender
differences in maths anxiety. Not entirely

convinced, however, I also produced interview
data, thus aiming to specify more fully the
contexts of using numbers. This raised questions
about the usual concepts and methods for studying
maths anxiety. .

OBJECTIVES OF THE STUDY

(1) to discuss the usefulness of various notions of ’maths
anxiety’, as a block to numerate activities, among adults;
(ii) to study expressed maths anxiety(MA), both from
questionnaires and interview situations, to contrast this
with MA exhibited in interviews, and to consider the
relationship of these with performance;

(i1ii) to produce accounts of the origins and nature of MA
experienced by a droup of 1st year collede students;

(iv) to consider gender differences in (ii) and (iii)
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THEORETICAL FRAMEWORK(1)

A contemporary psychological definition of anxiety 1s " a
palpable but transitory emotional state or cendition
characterised by feelings of tension and apprehension and
heightened autonomic nervous system activity”
(Spielberger, 1872, p.24). Since the 1950s, types of anxiety
have been distinguished, according to:

(i) the cantext of the anxiety:general vs. specific ; test
anxiety and maths anxiety are examples of the latter.

(ii) how measured: by physiological/overt behavioural means,
or by self-reports;

(iii) when measured: a transitory ’state’ - immediately
after being experienced vs. a chronic ’trait’.

Occasionally, some interesting relationships between levels
of anxiety and performance were found such as the “inverted
U, but, for the most part, reviews of results are
contradictory (e.g. Biggs, 1962).

The notion of ~mathematics anxiety"” has been highlighted,
since 1870’s researchers were seeking to explain women’s
apparently lower performance, and ’‘participation’, levels in
maths courses, other than by innate differences. Prominent
among the measures of MA proposed were the Maths Anxiety
Rating Scale (MARS)(Rounds and Hendel, 1980), and the Maths
Anxiety Scale (Fennema and Sherman).

METHODOLOGY( 1)

A suitable setting was a Polytechnic with a relatively high
proportion of ’‘mature’ students (over 21 years of ade,
returning to study after some years of work or child-care),

sone of whom are admitted without ’standard’ H.E.
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qualifications (2 A-levels).

Over 1883-85, entrants to two degree courses were asked to
complete a questionnaire. This included items about their
previous maths experisences, and a maths ’performance scale’,
followed immediately by a version of the MARS .

Our adaptation selected 28 items, brief descript ons of
situations such as “"adding two three digit numbers while
someone looks over your shoulder”, sceking responses on a
7-point scale from “very relaxed" to “very anxious”. Half of
these items were related to each of two factors proposed by
Rounds and Hendel (1680); namely, matht tegt anxiety(TA),
about maths courses or tests, and pnumerical anxiety(NA),
relating to everyday concrete contexts.

RESULTS(1)

(The following relate only to the 1984 Social Science

entrants; n=84 Females + 52 Males.)

1. In the questionnaire , the level of anxiety expressed

by women was substantially higher than men’s. '
NUMERICAL ANXIETY MATHS TEST ANXIETY

F M F H
MEANS 3.07 2.76 4.43 3.80
S. D. 0.89 1.01 1.22 1.14

2. Correlations between results on the maths performance
scale and scores on the two MA subscales were negative and
low (approx. -.2), with a hint of an inverted-U scatterplot
(or at least the right-hand half of one). The pattern was
essentially the same for males and females.

PROVISIONAL CONCLUSIONS(1)

IC
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1. Women express a higher level of MA than men, on this
self-report measure, in the particular conditions (at the
end of the first Psychology lecture of the year).

2. A simple linear correlation between MA and performance is
not very informative.( Non-linear modelling is underway.)

3. So far, MA is still seen as a personal characteristic, on
which one can be assigned a guantitative score. But are
there any _qualitiative differences in experiences of maths
anxiety across social groups,e.d. between women and men ?

4. Does not the context in which a person experiences and
reports maths anxiety need fuller description: is it the
mathematical features, the social interaction, and/or past
experiences which are meaningful?

THEORETICAL. CONSIDERATIONS(2)

To address these points, I drew on studies that emphasise
'context’ by seeing the use of numerate “skills” as an
integral part of some “activity" or “"practice”, as follows
(e.g.Lave et al.,1984; Walkerdine, forthcoming):

1.Context and activity mutually influenoe; for example, the

consumption of food etc, and the regulation of children in
so doing produces meanings (e.H. of ’more’); these meanings
will also be conditioned by the family'’s material situation.
2. Most, if not all, activities/contexts support
quantification; thus, "sharingd” as a child gives meaning to
size and distance relations.

3. Practices and their meanings are emotionally charged
Thus, buying things may be related either to pleasure or to

anxiety, or sometimes to both.

4. Practices are often specific to particular social groups
- or cultures. Thus, "going out for dinner" may have a
different meaning for men and for women.

5. A particular task may call up one - or several -

practices as relevant at one time. Thus looking at &a
O
E[{L (oW a)
16()
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pie-chart may remind someone both of a school maths topic,
or of sharing food “fairly" with siblings - or both.

METHODS(2)

Towards the end of their 1st year a small subsample of the
Social Science students were interviewed (1984:n=9, chosen
by a mix of random and “volunteer” methods; 18985:n=16,
chosen randomly), and asked to describe:

(a)the way they were thinking about solving a set of
’practical’ problems; e.g. readind graphs, deciding how much
(if at all) thay would tip after a meal, deciding which
bottle of tomato sauce they would buy; plus

(b) the sorts of practices “"called up” by the interview; and
(c) past situations in which they had experienced MA.

RESULTS(2)

(These results refer only to the 1984 cohort, and are
currently being tested and developed with the 1985 sample.)

1. As expected, moro women (3 of 4) than wen (2 of B5)
exprossed anxiety clearly during the interview, often about
the interview itself, sometimes about outside situations;
€.d8.85/8 (Working Class M), thinking about having to do
mental sums, if he were to take a pub job: “I think ' panic’
because of people in front ot me waiting to be served".

2. As for exhibiting anxiety, I began by using rough
indicators for anxiety, such as: (a) speaking unusually
fast, or slowly, or quietly, (b) “mind goind blank" or
nervous laughter, (c) wantind to discuss the answers; (to the
problems posed). Initial analysis shows all (5 of 5) men
exhibited anxiety, including 3 of 3 who had not expressed
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it. For example, apparently confident about using numbers,
85/4 (Middle Class M) feels hig mind go blank for a moment
while calculating a 9% pay rise exactly, explained as “a
sudden block, I guess through not doing tables. . .through not
using it".

3. Interview problems called up a wide variety of practices,
sometimes requiring numeracy, sometimes related to maths in
a surprising way. An illustration: for B85/5 (MC F), a draph
showing changes in gold prices over a day’s trading,
recalled for her growing up in a stockbroker’s family:
~_..as a stockbroker, your home and your material valuables
are on the 1line all the time... most of the time, it was
like living under a time bomb ... especially if you don’t
quite know how the time bomb’s made up or when it’s going to
explode...." When I asked how she saw his work, to pick
words, adjeotives to describe his work, she replied:
“capitalist, corrupt, business-like, ..um, mathematical,
calculating, devious, unemoticnal...”

PROVISIONAL CONCLUSIONS(2)

1. In the questionnaire , the level of anxiety expressed by
women was substantially higher than that expressed by men.
This difference is observed in irterviews, too, but there
men seem to exhibit more unacknowledged anxiety.

2. Interviewees’ accounts indicate that experiences
formative of maths anxiety include those with teaching at
school, but also those to do with relationships with parents
and siblings. This suggests new ways to produce a fuller
account of maths anxiety.

IMPORTANCE OF THIS STUDY

128




[E

- 98 -

1.This study explores the concept of ’maths anxiety’, and
also particular ’truths’ about it, e.g., ’females have more
of it than males’ - by drawing on two theoretical

frameworks, and by using questionnaire gnd interview data.

2. This work is possibly the first(?) to use the Mathematics
Anxiety Rating Scale outside North America. Because of the
high proportion of ’mature students’, this sample is closer
than most to being representative of the population of
adults at large.

3. This study uses the idea of a ’practice’ to describe the
contexts of doing maths. It attempts this by interviewing
(rather than by more time-consuming observation}, and
thereby elicits indications of a relatively large number of
such practices (though not described in detail).

4. This study aims to understand the fluency and ease with
which adults wuse numbers within particular contexts, not
only in terms of gognitive familiaritv(as is largely so, say
in Lave et al., 1984) - but also in terms of the emotignal
associationg of the practices concerned.
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A COMPARISON OF TWO PALLIATIVE METHODS OF
INTERVENTION FOR THE TREATMENT OF
MATHEMATICS ANXIETY AMONG FEMALE COLLEGE STUDENTS

by
W. MICHAEL GENTRY and ROBERT UNDERHILL

Mary Baldwin College/Virginia Tech

self-efficacy theory (Bandura, 1978)
provided the theoretical underpinnings for
two mathematics anxiety interventions,
cognitive restructuring (cR)} and modified
progressive relaxation (MPR). When
mathematics anxiety was measured with a
paper-and-pencil inventory, the difference
between the mean levels of self-reported
anxiety for CR and MPR subjects was not
statistically discernible. When anxiety
was operationally defined as skeletal
muscle tension and measured with an
electromyograph, CR subjects as a group
experienced significantly lower levels of
anxiety than MPR subjects as a group
(F = 2.81, p = .036). Physiological and
paper-and-pencil measures of anxiety were
minimally correlated.

Since mathematics anxiety is one of the factors
contributing to the problem of underrepresentation of
females in scientific and technical fields (Betz, 1978),
there 15 a need to pursue at least three levels of
investigation: (1) to understand the etiology of
mathematics anxiety, (2) to develop intervention
strategies which help individuals who exhibit this
affective problem, and (3) to compare the relative
cffectiveness of these interventions. This
investigation focuses on the latter need, and is

important for at least two reasons: {1) the problem of
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mathematics anxiety amcng female college students is of
national concern, but appears to be endemic among
students enrolled in southern liberai arts colleges
(Thompson and Levin, 1977), and (2) the majority of
previous math-anxiety research relied only on paper-and-
pencil assessment data (Tobias and Weissbrod, 1980).
This study was conducted at Mary Baldwin College, a
private liberal arts school for women, and it utilized a
two-dimensional response, i.e., a paper-and-pencil
instrument and a physiological measure of anxiety.

The math-anxious individual must struggle with a
combination of at least three negative elements:
(1) undesirable physiological responses, (2) certain
pernicious features of the math-environment, and
(3) maladaptive thoughts (Heller and Kogelman, 1982).
Bandura's (1978) social learning theory seeks to
incorporate these three components into an integrated
framework. Expectations of personal efficacy play an
important role in Bandura's theory. Efficacy
expectations are perceptions of personal mastery, i.e.,
subjective estimates regarding one's ability to cope
successfully. The relationship between self-efficacy
and attitudes toward mathematics was studied by Collins
(1982) who reported that they are positively correlated,
i.e., those who regard themselves as highly efficacious
approach potentially threatening tasks nonanxiously.
Further, Hackett (1981) reported a significant
relationship between perceived self-inefficacy in
dealing with numbers and mathematics anxiety, i.e.,
those who regard themselves as inefficacious experience
varying degrees of anxiety and stress. Since Bandura
(1978) argues that anxiety is the product of perceived
inefficacy, social learning theory provides a useful
framework for the study of mathematics anxiety.

Operating from different theoretical viewpoints,
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behavioral therapists have developed a variety of
interventions for the treatment of anxiety disorders.
Corresponding to the environmental component of
Bandura's model are direct action methods of
intervention designed to alter anxiety-eliciting
environments. Corresponding to the cognitive and
behavioral components of Bandura's model are
intrapsychic and symptom-directed modes of intervention,
respectively, which are aimed at reducing the level of
anxiety once it has been aroused. Palliative methods
such as these are used to soften or moderate anxiety,
thus helping individuals fdnction adequately within
anxiety-eliciting environments.

Interventions aimed at modifying the mathematics
learning environment are plentiful and achieve positive
results. However the impact of direct action
interventions is limited, i.e., treatment~-produced
improvement is not sustained, because the math-anxious
individual is not provided with a set of coping skills.
Intrapsychic and symptom-directed modes of intervention
equip math-anxious individuals with coping skills, and
unlike direct action techniques, focus primarily on
efficacy-based anxiety. To the extent that math-anxious
individuals continue to use these coping skills, long-
term or durable improvements are achieved. Modified
progressive relaxation (MPR} is a symptom-
directed mode of reducing anxiety, whereas cognitive
restructuring (CR) is an intrapsychic mode of
alleviating anxiety. These two palliative techr :ques
were chosen for comparison since considerable evidence
exists which indicates that both MPR and CR are
effective as therapeutic interventions for a wide range
of stress-related problems.

Subjects for this investigation were sixty-two Mary
Baldwin College students enrolled in three mathematics
courses of differing levels of mathematical rigor during
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Fall semester, 1985. Participation was a course
requirement. A review o{ twenty-three mathematics
anxiety intervention studies revealed that only seven
dealt exclusively with female subjects. Consideration
of this statistic, together with the issue of

‘differential treatment of female and male students by

mathematics teachers (Becker, 1980), and the belief that
mathematics anxiety is more common and severe among
females (Betz, 1978), contributed to the decision to
limit this study to female subjects.

Subjects assigned to CR were taught to replace
maladaptive thoughts with more positive rational
thoughts. During these sixty-minute sessions the
underlying assumptions of CR were explained. Subjects
learned to identify distorted cognitive styles {e.g.,
emotional reasoning, overgeneralization,
personalization, and all-or-nothing thinking). During
these sessions the counselor played the role of devil's
advocate. The subjects were to assume that the
counselor actually neld certain maladaptive beliefs and
then generate as many reasons as possible why it may be
irrational or unreasonable to hold onto such beliefs.
During the last few minutes of each session, while
working a series of math-related problems, participants
were instructed to use this list of positive coping
self-statements to practice changing their own
maladaptive cognitions.

Subjects assigned to MPR met individually with a
counselor once each week for six weeks. Subjects were
informed that the purpose of each thirty-mindte session
was to help them learn to inhibit dysponetic activity,
thereby increasing their performance in mathematics.
MPR was presented as a coping skill for dealing with
unwanted physiological arousal. At the beginning of
each session, the counselor assisted each subject in
identifying and locating twelve major muscle groups
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(e.g., frontalis, trapezius, rectus abdominis, and
gestrocnemius). When a subject was comfortably seated,
she was instructed to breathe easily and smoothly,
tightening only the muscles that she is directed to
tighten, letting the rest of her body remain relaxed.
The counselor then guided the subject through & fifteen-
minute tape recorded script. During the last few
minutes of each session, the subject was given a series
of math-related problems to work and instructed to use
progressive relaxation to cope with unwanted
physiological arousal.

In addition to the treatment variable, there were
two other independent variables: level of achievement in
mathematics (SAT), and level of participation in
mathematics (remedial, intermediate, or advanced). Four
research questions were investigated: (1) When
administered over a six-week treatment period, are CR
and MPR equally effective in reducing mathematics
anxiety among female college students? (2} Are any
combinations of treatment and level of achievement in
mathematics characterized by lower levels of anxiety
than other combinations? (3) Are any combinaticns of
treatment and level of participation in mathematics
characterized by lower levels of anxiety than other
combinations? (4) To what extent do physiological
indicators of mathematics anxiety and paper-and-pencil
assessments measure the same construct?

Data were collected in two stages. The first stage
occurred at the end of a six-week treatment period, at
which time Sandman's (1973) Mathematics Attitude
Inventory (MAI) and an electromyograph (EMG) were used
to obtain self-report and physiological measures of
mathematics anxiety. The second stage occurred eight
weeks later, at which time the MAI was readministered.
Initial descriptive statistics suggested that: (1)
subjects at remedial levels of participation in
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mathematics tend to experience higher levels of sell-
reported mathematics anxioty, (2) subjects at more
advanced levels of participation expericence a greatoer
degree of skeletal muscle tension than subjects at
intermediate and remedial levels of participation, (3)
paper-and-pencil and physiological measures of
inathematics anxicty arc minimally correlated, (4) CR
subjects as a group experience lower levels of self-
reported mathematics anxiety than MPR subjects as a
group, {5) MPR is least effective with students at
advanced levels of participation in mathecmatics.
Infercntial methods revealed that: (1) when mathematics
anxiety was measured with Sandman's MAI, for both the
immediate and delayed posttests, the difference between
the mean levels of self-reported anxiety for CR and MPR
subjects was not statistically discernible, (2) when
anxiety was operationally defined as skcletal muscle
tension and measured with an clectromyograph, CR led to
significantly greater reductions in anxiety than MPR
(F=2.81, p=.036) , (3) there was no interaction betwecen
type of intervention and level of achievement in
mathematics, (4) when anxiety was operationally defined
as skeletal muscle tension and measured with an
electromyograph, a statistically discernible (F=3.925,
p=.027) synergistic effect was detected between type of
intervention and level of participation in mathematics,
indicating that CR is superior to MPR for subjects at
intermediate and advanced lcvels of participation in
mathematics, whereas MPR is superior to CR for subjects
at remedial levels of participation, and (5) there was
insufficient evidence to indicate that a linear
relationship exists between paper-and-pencil (MAI) and
physiological (EMG) measures of mathematics anxiety,
implying that the two instruments may be tapping
different dimensions of the mathematics anxiety
construct.
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STUBLENTS' PERCEPTICNS UF MATHEMATICS AS A DUMAIN

vicky L. Kouba and Janet L. McDonald
The university at Albany,
State University of New York

ABSTRACT

This research iaentifiea junior high students' (N = 451)
perceptions of what is and isn't mathematics. Per-
ceptions were documented by five 11-item questionnaires
reflecting six major strands of k-6 content. Students
were asked to indicate whether mathematics was used or
involved and supply their rationale for each choice. The
results were compared to K-6 children's answers from a
previous study (N = 1202). The results showed that
juntor high school students' percentages of VYES/AG
responses paralleled the K-6 sample in both order and
magnitude. Differences {in raticnales between samples
occurred in use of counting, emphasis on the format of
problems, and need for an identifiable operation and
explicit number pairs. Common elements from both samples
included that mathematics is a fluid domain, isolated
from other subject areas, active and schoo) related.

This is the second in a series of studies investigating
students' perceptions of the domain of mathematics. The underlying
assuaption of this line of research is that the perceptions that
students and teachers have of what mathematics is (and isn't) may
affect their concepts of specific topics within mathematics, their
attitudes toward mathematics, their performance in mathematics and
other related aspects such as confidence, choice of courses/careers
and perceived usefulness. However, before looking at how perceptions
of mathematics affect other aspects of learning and teaching
mathematics, we need to aevelop a reliable system for identifying,
describing, classifying and, ultimately, "measuring” these
perceptions. This is the intent of the current series of studies.
The data from these studies will provide the necessary foundation for
further research investigating the effects of perceptions of the
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conain of mathematics on those other possible aspects. 0f equal
importance are the data this research may provide toward the
identification and documentation of misconceptions that students have
about certain specific aspects of mathematics such &s subtraction,
division, and the iaterials or actions that are involved in aoing
mathematics.

The data from: the previous study of 1202 chilaren in grades k-6
showed that children's perceptions of mathematics, are nut quite what
might be expected. While adults may consider mathematics to be a
well-defined subject watter {(Ginsburg, 1963), kindergarten through
sixth grace children do not see it as so (Mcbonala & Kcuba, 1586a,
1966b). For them, the domain of mathematics, while being narrow, is
also not constant. Rather, it is upwardly shifting. To many children
when something becomes easy, it is no longer mathewatics.
kindergarten through sixth grade children also see mathematics as
being isolated from other subject areas, active, and school-related.
For these children, whether a situation involves mathematics s
influenced by developmental factors, the presense of explicit numbers
ana operations in the situation, and idiosyncratic ac<rects of the
particular situation.

The major purpose of the current study in this 1ine of research
was to identify whether seventh and eighth grade students' perceptions
of the domain of mathematics were parallel to those of kindergarten
through sixth grade children. Do developmenta: trends identified with
elementary school children continue through junior high? Do explicit
cues to numbers and operations continue ‘to affect students’
jdentification of the kind and the extent of mathematics involved in a
situation? Does countiny continue to play a wajor role in students'
justification for the presence or absence of mathematics in a
situation? Will mathematical operations and concepts continue to
"arop out" of the students' perceived domains as a result of their
becoming more automatic and “easy?" Are there gender differences in
students' perceptions which were not jdentified 1in the previous
research?
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METHUD

Subjects. The subjects were 219 7th graders and 232 &th graders
trom five public or private schools, representing small, medium and
large aistricts in rural, suburban or urban settings.

Proceaure. Uuring their mathematics class, the students were given a
questionnaire consisting of eleven situations. They were instructed
by their classroom teachers to quietly read each situation and
inuicate'by circling YES or KU whether mathematics was being done or
was involved in the situation. They then were to indicate in writing
why they chose YES or NO. Five different questionnaires were
constructed in a stratitied rancom manner from a pool of 55 items (see
Figure 1 for sample items). *The forms were distributed randomly
within each class. The questionnaire items included the majority of

010. Melanie had to tell the teacher which was greater, 5
or 3.

C3. Melanie had to tell the teacher which number was
greater,

C4. Dave played soccer yesterday afternoon.

b4. Billy looked at the clock to see how long a nap he
could take before the soccer game.

A3. betsy made Valentine cards by cutting out hearts
using folded paper.

Lb. betsy made paper dolls by using symmetry.

Ab. Julie kept track each day of how many miles she rode
on her bike.

B1. Alan took out his ruler and measured his desk.

E1. Julie arranged three different colored chips in a
line in as many ways as possible.

b3 George cleaned up room number 7 which was really
nessy.

Figure 1. Sample questionnaire items
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the items used in the k-t study, as well as some new and some revised
jtems. The items were designed to reflect the six major content
strands of the New York State k-6 syllabus: number and numeration,
operations with whole numbers and fractions, probability, statistics,
geometry ana measurement. Several items included paired explicit and
implicit use of cardinal and ordinal numbers as both facilitating and
distracting elements (e.g. 010, C3 and B3). The situations varied
from ones where the operational process was clear to those where it
was necessary to infer the mathematical process involved (e.g. L10 and
b4). Situations in which the protagonist was not using or doing
mathematics were also included (C4 and B3}.

RESULTS AND DISCUSSION

For each item, students' YES or NG choices were tabulated and
matched with the syllabus-specified designation of whether the item
involved wathematics. The percent of students agreeing with that
desiynation was recorded by grade level and sex. Significant gender
differences appeared on only eight of the 55 items. On five of the
items boys were in greater agreement with the syllabus than the
girls. On the remaining three items, girls were 1in greater
agreenent. The items were then ranked by percentage of agreement.
The percent agreeing from yrades 7 and 8 combined was correlated with
the percent agreeing from grades k-6 for 43 of the items which were
jdentical across samples. A Spearman's rank-order correlation was
determined comparing the relative ranks of the items based on the
percentages of students' agreement with the syllabus. The resulting
rho of .6390 (41, N = 451), p & .00, indicated that in general,
jtems which were easily identified by K-6 children as mathematical
were equally easy for junior high students to identify. The same was
true for difficult items. A Pearson correlation was also calculated
on the two sets of percents of agreement with the syllabus. An r of
687 (41, N = 451), p 4 .001, indicated that in addition to a
relatively stable order of items, that the individual percents of
agreement on each item were also very similar. Agreement with the
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syllabus was calculated for the entire set of questions for each grade
level. In comparing these means with the means of each of the grade

levels of K-b, it was determined that the generally increasing trend

of agreement in the K-6 data, did not continue through the 7-8 data
(see Table 1).

Table 1
Percent of Agreement with Syliabus Designation of Whether
Mathematics was Involved

Grade Level K 1 P4 3 4 5 6 7 8

Percent 54 61 61 71 76 60 80 73 77

The comments explaining the students' YES/AG choices were sorted
into rationales for responding YES, and rationales for responding NO.
These two types were classified and tallied in order to identify
relative frequency of response categories. An examination of Table 1
might suggest that students are reasonably adept at classifying
mathematical 1items. However, this table shows only the students'
ability to see math in a given item, not identify the appropriate area
of skill involved. The analysis of student rationales revealed that,
in many cases, the students either designated a skill or concept at a
much Tower level than the syllabus, or identified an inappropriate or
tangential skill or concept. For example, for item E1, students who
identified it as being math included those who gave reasons such as,
“it has to do with colinear stuff, etc.," "you can count the colors,"
“to arrange them in as many orders you would divide," or “you have to
use numbers... 3 chips X 1 row." As with the K-6 sample, students
often misapplied the operations of division and subtraction.

As might be expected, junior high students gave “sounting® as a
reason for a situation being mathematical much less often than k-6
children. For the k-6 children, counting appeared in the top three
reasons for a YES response on 15 of the jtems. For the Junior high
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students counting appeared in the top reasons on only eight of those
sane items.

Junior high students seemea to view mathematics as a broader
domain than did k-6 children, for they included probability, geometry,
ana measurement in their rationales. However, they dia so mostly for
obvious situations where an explicit term, symbol or format was used.
when the format was not easily recognizable as one which they might
have seen 1in mathematics class, students often indicated that
mathematics was not involved and gave reasons such a “There's no
problem part" and “there's no way to make it into a problem," or
“there's no question." The basic operations were still the major
component of mathematics for the junior high students. This appeared
in YES and NU rationales alike. Students often identified situations
as being mathematical because they “saw" one of the four basic
operations present, although not always correctly. Students also made
statements like “It's not math because there's no aadition,
subtraction, multiplication or div’sion.* At a more subtle level,
several students made the comment "It isn't math because there's no
other number,” when only one explicit number appeared in a problenm,
thereby seemingly making an operation impossible.

Junior high students were similar to K-6 children in that they
appeared to identify mathematics by what they had seen in mathematics
class rather than by recognizing the underlying structure of situation
as mathematical. For example, while junior high students were able to
identify the mathematics in an item where the word “symmetry" was
used, they could not identify the mathematfcs in similar situations
where the concept of synmetry was described but the actual term was
not used.

The following additional conclusions were drawn based on the
analysis of the Jjunior high students' rationales. hathematics
continues to be an upwardly shifting domain. For example, some of the
students gave reasons such as, “That's not math because it's just
conaion sense® or “just logical" or “you just know." Other students
echoed what the K-6 children indicated in that mathematics is “work, "
and also that mathematics requires activity, through statements such
as “there's nothing to do" for situations describing a protagonist who
was “looking" or “thinking" rather than calculating.
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Sow junior high students see mathematics as school related in
that they identify situaticns as mathematics because they are what
they have done in class. Gther perceptions demonstrated by other
Junior high students included that mathematics is exact and therefore
does not involve approximating or estimating, that mathematics is
correct, requires calculation, and that it is not done in art, social
stuaies, tnyglish or science class.
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LES MATHOPROBES: UNZ EXPERIENCE DE REINSERTION
AU NIVEAU COLLEGIAL

Raymald Lacasse, Univeraité 4'0ttave
Linda Gattuso, Cégep du Visux-lontréal

Le problame de 1a mathophobie feit partie du
quotidien dea protesasurs de mthématiques st, de
tagon plus gémante, dz la vie de certains studiants.
En nous besant sur diverses oxpériences tentées
perticulidremsnt aux Etats-Unis et sur notre propre
vécu, nous avons Ris sur pied un environnesent aysnt
pour but de récomcilier un certain nombre d'étudients
ayant un vécu négatif face aux sathémtiques. Dans
notre rechsrchs, nous voulions voir #'il Yy aeweit
changemsnt d'attitude chex les studiants qui
participaient aeux ateliers et nous voulions
identifier les raisons qui provoquaient co
changement, Mous espérions trouver uhe epprochs de
1' enseignement des msthéaatiques qui ainimiserait le»
situations propices & 1'éclosion de la mathophobie.

Notre pratigque comme suseignents en mthématiquos, & laquslle
s'ajoutent les tésoignages, coamsntaires ot remarques formulés par
d4'autres intervemants nous perssttent de constater que de trbs
noabseuxr étudients refusent de »'inscrire & certains programacs

d'étude parce quo ceux-ci  comportent quelques cours de
mathéuatiques.

A ceux-la. i1 faut ajouter tcus les eutres qui »' inscrivent &
chacune des sessicns meis qui, systématiquarent, ebandonnent: ou
encore, ceux Qui retardent, d'une session & l'autrd, le noment
tatidique ol 1ls devront finalement se résigner & suivre leuzrs
teasux cours de mathématiques. Coums 11 8'sgit souvent d'studiacts
qui. per silleurs, réussissent bien dens d'autres matidres, il est
difficile d‘attribuer cet insuccés & un probladas d'ordre
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intellectuel.

Le problisme n'est pas nouveau st plusisurs études on ont déje
¢té taites: Mimier (1976) Thenh Minh(1981). Aikem (1970), etc. Il
ressort de ces études que le cOté aftfectit de 1'Stre e un eftet
soit stimulant soit perturbateur dans 1'eapprentissege des
mthématiques.

La mathophobis, selon Tobias (1580) eat 1'etat de panique, de
paralysis, de désorganisation mentals qu'éprouvent certaines
persoanss devant un probléas de mathématiQues. MNotre recherche
s'articule ot se développs sur 1le postulat voulant que 1la
composants effective de 1'appreatissege sxpliQue én grande partie
les échecs multiples st irratiommsls vécus par les sujets
identitiés comms mathophobes.

Nous avons mis sur pied, eau Cégep du Vieux Nontréal, en
collaboretian avec 1les service d'eide & 1'apprentissegs, dea
ateliers "phobie des maths®. Ces atsliers fonctionnent depuis 1la
session d'hiver 1984. A l'automns 1985, nous evions un nouvel
objectit : celui d'y feirs des observations atin de formuler des
hypothises sur les facteurs aeffectifs pouvant intervenir dans
1'apprentissege des mathématicues.

L'annonce des atslisrs ss fuit eu dédut ds session par 1ls
service d'eide & 1'apprentissage. Au moasnt de 1'inscription, les
studiants prennent rendex-vous evec un psychologus. Les atsliers
s0 deéroulent sur uns période de cing ssmaines & reison d'un soir
per semaine.

Les eétudiants susceptibles de parxticiper eux atsliers sont
ceur qui ont identifi¢ leur insécurité face aux mathésatiques st
@i se¢ recoomaissent & 1« lecturs du profil proposé par la
publicité. Ce profil décrit sosasirement les caractéristiques d'un
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sathophobe tel qu'cn peut 1le rencontrer au Cegep. Pour cette
recherchs. nous avons travaillé sevec un growpe de quatorze
étudiants dont 1'Age veriait entre 17 et 24 ans, pour la plupert.
Soulignons que leur participation & ces ateliers est entidrement
volontaire.

Les ateliaxs sont sanimés per trois personnes ! 1es deux
cherchsurs qQui aont professeurs de mathzatiques, ot un psaychologuse
ongagé & 1'occasion de cette zecherche. Le premier contact so fait
lors une rencontre individuslle eutre 1'étudiant et le psychologue
dans le but de disgnostiquer et de préciser 1e probléae.

La préparation du contenu des ateliers se fait par 183 deux
protesseurs de mathématiques. Les ateliers sont animés selon les
modalitds suivantes: & tout moment, 1'détudisnt doit se sentir libre
de partager ses sentiments avec le growpe, de prendre uns pause, de
demander de 1'aide individuelle, de se joindre & d'sutres pour
traveiller sur un probléms. Les animateurs doivent établir wum
climat de non-compétiticn dans un envirompemsnt soutenant et se
nontrer particulidrement disponibles pexdent les ateliers. Les
animateurs écoutent 1'étudiant quand 11 réussit & verbeliser ses
problémes et ses difficultés; ils 1‘'observent et lui font remarquer
ses Drogres, ses chaminsments.

Le premier atelier & uns forze un peu particulidre car son
principal objectif est ls prise de contact. Le schéma des autres
rencontres est le atlvant

~Retour sur les activitds de ia ssmaina précédents.

-Problémes suggérés sur un théme précis activités
mathématiques.
-Pause.

-Retour sur 1e processus aux deur niveaux mathématiqus et
affectif (attitudes et comportements face & un probléme).
-Fin de 1'atelier.

-Tout de suite aprds la rencontre, les enimateurs font un
échange d‘'cbservations et une brive évalustiocn de 1'atelier.
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A partir de la deuxidne rencontre, lee thinmes préasntés eont
les asuiventa :jsux logigues. activites gdoastriques, algébre.
fcrmules, probadilitde.

En pius d'échanger avec les autres participants et les
animateurs, 1'étudiant a 4 sa disposition un "journal de bord® dans
lequel 11 eet invité & écrire, sous un pesudonyms, toutes ses
inpreseiaons ot ees idées personnslles. Les animetesurs tisnnsnt
paralldlemont un cahisr oU ile notant leure ismpreseions.

Nous avons etructucéd les atelisers avec. & 1'eeprit, un
cortain noabre de postulates de base @u'il nous seable important
d'expliciter. Mous supposons qus ls mathophcbe ne 3'igaore pas et
qu'il eet capable d'articuler son probléme en autent qu'il ee sent
disposé & le faire. Il faut donc #tre perticulidrewsnt attentif &
co Qque 1'étudiant dit. De plus, nous somnes conveincus que le
probléme de 1la mathophobie se rigle au cosur de 1'activité
mathénatiqus. Les problémss, les activités et le matériel sont
choiaie & cause de leur richesse et de leur variété. Ils doivent
pernettre ausei bien 1'démergence des réactions mathophobiques que
1'occasion de vivre dee succés en mathématiques. Nous présumons que
le mathophobe révble eee difficultes & travers ecn activite.

Lo mathophobe peut arriver effectivement & maftriser 1la
situation, du moment Qu'on arrive & clarifier avec 1lui 1les
dinsnsions qui eont en jeu. Pour cels, les gquestions ou les
atfirmations lancéss par les enimateurs se regroupent on cing
volets principaux: reéflexion sur les activités. confrontation des
nythes vehiculés par les mathophobes, partage du vécu mathématique
entre 100 animateurs st les étudiante, pertage de 1'hietoire de la
gendse des idées en mathématiques, point de vus du professewr dans
oot réle habituel ou etéréotyps.
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Les donnéss sont puinédes & partir des sources suivantes:

Le résusé des entrovues; les rdéponses aux questionnaires (pré
et post); le jourral de bord de chaguo participant. les potes des
animateurs; les enreJistrsments des ateliexs; 1les entrevues.
rencontres et lectures faites dans le cadre des atsliers et portant
sur le nims sujet. Ces donnéss ont été analysées en détail.

Les mathophobes en avaient long & nous aepprendre. Leur
expérience de 1'epprentissage mettait en évidence des conditions
tondamentales de la démarchs mathématique et s'eppliquait en fait &
quelqus chose de besucoup plus large que ls problems de ls
mathophobie. Wous uvons pu observer ds tréds prés ce que 1'étudient
ressent en faisant des mathéastiques. et cette cormaissence nous
apparait aussi valsble dans 1le contexte régulier d'une classes quo
dans lo contexte apécifique des ateliers pour mathophobes.

Nos résultate et leur anslyse nous ont permis a'explorex
diftérsnts facteurs sur lesquels les professeurs pourraient
intervenir dans une démerche pédegogiqus régulidre.Voici donc les
treize hypothbses généréss par notre recherche.

Hi: Il est edmnis que 1'spprentissege des mathématiques
suppose ot met en jeu de tfortes dimsnsions atfectives. De ce fait.
)'apprantiesage sst souvent facilité per la présence de caraux de
commumnication efficaces. Les étudiants préférent se sentir & 1'sise
dés le début des cours; ils ont besoin qu'on détablisse ces cenmaux
de comsunication au plus tit.

H2: 11 feut, de la part du profeaseur, s'adrssser 3d 1la
dimension affective de 1'apprentissage des mathématiques qui. que
le professeur le veuills ou non, est toujours en action: sinun,
1'apprentissags est, & le limite, wvoud & 1'échec.
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H3: I1 feut s'assurer que les étudiants puissent a'exprimer
sur leurs perceptions de la matidre, du professeur, de leur propre
vécu en mathéaatiques. De la sorte, on peut éviter de perpétusr de
tausses impreasions, de fausses implications et de fausses
dichotonies qui sesblent actusllement circuler s grand nombre, eu
détriment de 1'apprentissege des concepts et des méthdes propres
aux mthémmtiques.

Hi: Len relations étudiant-étudient sont trés isportantes et
influancent trds positivemsnt 1'apprsutissage des mathématiques; le
professsur doit privilégier les dchanges & ce niveau.

H5: L'exploration 1libre, en groupe. semble un facteur
inportant dans 1'apprentissege : les étudiants doivent avoir la
possibilité de chexcher, d'émettre des hypothises et de ienter de
les vérifier ou d'en tirer des conclusions.

H6: la verlelisation de la démarche poursuivie lors d'une
activité wathématique est trop souvent négligée. Tace & un pair,
1'sétudiant toxcé de verbaliser sa demarche lui donne une réalits,
peut »'en détacher, 1'evalusr st la poursuivre.

H?: Le professeur doit transmettre son vécu sn mathématiques,
c'est-d-dire faire en sorts que 1'eétudiant puisse s'identifier & 1a
démarche d'interrogation, de recherche et des zéflexion que
1'enseignant  effectue lorsqu'il aborde une problémstique
mathématiqus.

H8: Il taut que le professeur ait dcs occasions de suparviser
1'apprentissage individusl. De nombreuses séquences ont montré que
le» animateurs peuvent effectivement guidsr 1°'étudiant & mesure
qu'il progresse en lui pozant des questions judicieuses, en 1lui
faisant remarquer les résultats acquis, en formulant explicitenent
le» hypothdses implicites de 1'étudient, stc...
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E9: In relation avec la supervision de 1'epprentissage, il
semble important de multiplior les moments de prise de conscience
des résultate (“Fureke"). On remarque dans quslguas séquences que
ces moments peuvent mener & la compréhension mais que 1'étudiant a
aussi tendance & “échapper"™ sss nouvalles coxmaissances. Il les
conserve du moment qu'on le relance suxr la piste.

B10: Ls professeur doit favoriser les apports hiastoriques et
situer 1la déparche de 1'humanité dans la construction des
mathésatiques. Ceci perasttra & 1'étudiant de conatater combien de

tenps ot de traveil i1 pout y avoir entre la question et 1la
Téponss.

Hii: L'étudiant doit pouvoir relier certaines démarches de
résolution de problime, de recharche, de vérification & son vécu
quotidien.

Hi2 La waleur des matbématiques doit &tre transaise mais
sans wmystification et de facom & co Qus 1'étudisnt puisse les
roconnaitre comms étant accessibles.

H13: L'snvirconssent wathématique doit dtre comcret, réel.
amkin, afin d'intéreseer 1‘étudiant. Autant le forms des ectivités
que les contextes choisis doivent Otre souples, attrayents ot
taciles d'accds pour piquer la curiosité et stimuler la recherche.

Les résultats de nos observatious nous permattent de pense:
qu'il est possible de remédiex & 1la mathophabio ot ce par des
moyens que nous pouvons qualifier de pédiugogiques : 1' snseignant
sn oerait doic le principal facteur. Disoms, pour texminer. que
cotts exploration nous perset A'satrsvoir la créaticn d'um nodble
d'intervention en clesse ot d'sn envisager 1'expérimentation. Il
sera ensuite possidble d'en éveluer les effets.
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INVESTIGATION DES FACTEURS COGNITIFS ET AFFECTIFS
DANS LES BLOCAGES EN MATHEMATIQUES

Lise Legault
Département des Sciences de 1'é&ducation
Université du Québec & Trois-Rividres

La revue de la littérature fait apparaTtre de multiples pis-
tes dans 1'explication des difficultés en mathématiques.
Nous avens tenté d'y voir plus clair en effectuant une dé-
marche exploratoire auprds de deux groupes de filles de &e
année primaire (3gées d'environ 12 ans), les unes fortes,
les autres faibles en mathématiques. Les instruments uti-
1isés ont €té& des épreuves piagétiennes, des entretiens et
deux tests projectifs (Rorschach et T.A.T.). On a trouvé,
sur le plan cognitif, une corrélation trds &levée entre
T'acquisition de 1'"opérativité™ et le succds en mathéma-
tiques. Sur le plan affectif, on a observé une tendance

3 ce que les mathématiques soient investies d'une valeur
phallique et ce, en relation avec le pdre, ainsi qu‘une
1égere tendance & ce que 1'échec en mathématiques soit
1'expression d'un refus de plaire & la mdre ou de se sou-
mettre & ses exigences, Mais 1'analyse individuelle du
vécu conscient et inconscient de chacun des sujets a per-
mis de constater que le succds ou 1'échec en mathématiques
s'inscrivent dans une dynamique propre 8 chacue 612ve et
qu'on ne saurait en conséquence relier de fagon générale
le rendement en mathématiques & tel ou tel facteur affec-
tif, de mani®re privilégiece.

En cherchant dans la littérature, nous avons découvert de multiples
pistes concernant 1'étiologie des difficultés en mathématiques, a’lant
des troubles neurologiques (Henschen, 1919; Gertsmann, 1964; Hasaerts
Van Geertruyden E., 1970; etc.) jusqu'aux fantasmes inconscients et

aux probl2mes d'ordre psycho-sexuel (Klein, 1923; Baudouin, 1951; Salzi,
1959; Male, 1964; Mauco, 1968; Diatkine, 1973; Nimier, 1976; etc.), en
passant par les facteurs psycho-pédagogiques (Mialaret, 1957,1959;
Dienes, 1904; Baruk, 1973, 1977, 1985; Tobias, 1980; Weyl-Kailey, 1985,
etc,). Certains auteurs privilégient la composante affective {slein,
1923; Baudouir, 1951; Salzi, 1959; Nimier, 1976; etc.), d'autres la di-
mension cognitive (Dodwell, 1961; Hood, 1962; Freyberg, 1967; etc.),
d'autres les méthodes pédagogiques (Hug Colette, 1968; etc,), etc,
Quelques-uns font référence 3 une variété de facteurs (Male, 1964;
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Jaulin-Mannoni, 1965; Beauvais, 1970; etc.}. Plusieurs ne formulent
que des hypothéses, certains se sont aventurés dans des recherches
assez mal définies, superficielles ou potteuses sur le plan méthodolo-
gique, si bien que les expérimentations & caractére scientifique sont
peu nombreuses dans ce domaine. Et dans cette diversité, on trouve des
contradictions et des juxtapositions qu'on ne sait comment concilier.
Nous avons alors voulu voir un peu plus clair dans tout ce dédale de
variables et de facteurs évoqués et, en 1'occurrence, ROus avons tenté
d'effectuer nous-méme une recherche.

Notre cheminement personnel ayant orienté davantage notre intér@t vers
les facteurs psychologiques 1i6s aux difficultés en mathématiques, nous
avons envisagé de ne considérer que les dimensions cognitive et affec-

tive qui, d'ailleurs, regroupent & elles seules une multitude de facet-
tes et ont &té trop souvent 6tudites séparément. Ne voulant privilé-
gier aucune d'entre elles a priori dans notre recherche, nous avons
décidé de ne pas nous fixer d'hypoth2se de base en particulier. Notre dé-
marche a voulu Btre essentiellement exploratoire et permettre, a tra-
vers 1'ampleur de 1tinvestigation, 1'émergence par elles-mBmes des com-
posantes majeures, peut-&tre insoupgonnées , qui peuvent jouer un rdle
dans la réussite ou 1'échec en mathématiques. Nous avons voulu, plus
précisément, recueillir, dans une optique la plus objective possible,
un trds grand nombre de données sur le vécu conscient et inconscient de
chacun des sujets, afin de voir, & travers tout ce matériel, s'il se
dégage une dynamique qui a un lien spécifique avec le rendement en ma-
thématiques. Cette étude 2 donc 6té réalisée dans une perspective psy-
chanalytique.

Nous avons cependant €té contrainte, devant 1*ampleur de la tache, de
nous fixer certaines limites quant au nombre d'instruments & utiliser.
Des &preuves piagétiennes nous ont semblé 8tre un excellent outil pour
déceler le niveau de développement des structures logiques de nos Su-
jets, et, par ailleurs, les entretiens et tout particulidrement deux
tests projectifs {le Rorschach et le Thematic Apperception Test) nous
ont paru &tre les meilleurs moyens pour accéder aux niveaux conscient
et insconscient, apportant ainsi une vue globale de la dimension affec-

tive. En outre, il est apparu fondamental d'augmenter 1a validité des
données en procédant & des comparaisons systématiques entre des éléves
fortes et des él2ves faibles en mathématiques. Mais, afin d'éviter la

O
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prolifération des variables susceptibles d'influer sur les comparaisons,
nous avons choisi des sujets de méme sexe, de méme niveau scolaire et
approxmativement de m@ne §ge et de méme niveau socio-culturel, Ici en-
core, pour des raisons d'ordre pratique, i1 a fallu nous en tenir & un
nombre assez restreint de sujets. MNous avons donc constitué deux grou-
pes de dix sujets chacun: i1 s'agit plus précisément de filles, dgées
de douze ans environ, de classes régulidres de 6e année primaire, de la
région de Montréal, Les élaves du premier groupe devaient &tre, depuis
du mons trois ans, les meilleures des classes en mathématiques et réus-
SIr mieux en mathématiques qu'en frangais. Celles du second groupe de-
vaient avoir, depuis au moins trois ans, des difficultés spécifiques im-
portantes en mathématiques et avuir nettement plus de facilité en fran-
Gais. Le clivage a &té effectué i partir de 1'opinion des enseignants
et des résultats scolaires des trois derni@res années.

Cette approche diffare, semble-t-il1, de toutes les recherches effec-
tuées jusqu'ici dans le domaine des &checs en mathématiques du fait
qu'elle s'est donné & la fois non seulement un groupe-témoin (on note
en effet 1'absence fréquente d'un tel groupe dans maintes études con-
cernant les &l2ves ayant des difficultés en mathématiques), mais aussi
deux mesures, 1'aspect cognitif et 1'aspect affectif, en privilégiant
1'emploi de techniques projectives tr2s rarement utilisées pour ce
genre d'études,

En ce qui concerne les résultats obtenus, il se dégage de cette inves-
tigation une dichotomie tr2s nette entre les deux groupes de sujets,
sur le plan cognitif. On observe en effet que, chez les élaves fortes
en mathématiques, neuf sur dix sont de niveau nettement opératoire,
alors qu'une &l2ve paratt osciller entre les niveaux préopératoire et
opératoire. Chez les &laves faibles en mathématiques par ailleurs, au~
cune d'entre elles n'est franchement opératoire: huit semblent nette-
ment préopératoires, alors que le niveau des deux autres &laves est
encore fluctuant entre le préopératoire et 1'opératoire., On a constaté,
chez toutes les é&l2ves faibles en mathématiques, les nombreuses h&sita-
tions et la faible mobilité de la pensée, caractéristiques des sujets
qui ne sont pas franchement opératoires. Bref, on trouve une corréla-
tion trés élevée entre 1'acquisition de la réversibilité ou “opérati-
vité” et le succds en mathématiques.
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Sur le plan situationnel, on note, dans les deux groupes de sujets, une
sensibilité & 1'aspect assimilation des connaissances (r2gles 3 rete-
nir). De plus, les mathématiques sont pergues comme un ensemble de lois
ayant d‘irréductibles exigences, ce qui suscite de la peur, alors que

le frangais est vu comme laissant plus de place & 1'imagination et 3 la
créativité. Les &l2ves faibles en mathématiques réclament un enseigne-
ment plus indiviaualisé, moins compliqué, et plus de continuité dans

les méthodes d'enseignement. Elles se trouvent beaucoup plus laissées
a elles-mémes.

Sur le plan affectif, nous avons observé une tendance & ce que les ma-
thématiques soient investies d‘une valeur phallique et ce,en relation
avec le p2re: plusieurs €l2ves fortes en mathématiques semblent re-
chercher dans cette matidre une compensation & leur sentiment de cas-
tration ou de manque face 3 leur p2re, tandis que quelques éldves fai-
bles en mathématiques expriment par leur échec leur dépression sur le
plan phallique et leur démission dans leur qudte d'un soutien valable
de la part de leur p2re. En d'autres termes, i1 semble exister un rap-
port entre recherche active du p2re et succds en mathématiques, de m&me
qu'entre relation décevante au pére et échec en mathématiques. Chez
les él2ves faibles dans cette mati2re, nous avons remarqué en outre une
tendance 3 ce que 1'&chec soit 1'expression d'un refus de plaire & la
mare ou de se soumettre 3 ses exigences, Notons cependant que, chez

la majorité des sujets concernés, ces facteurs affectifs ne sont pas
uniques et primordiaux. L'analyse individuelle du vécu conscient et
inconscient de chacun des sujets a permis de constater que le succds

ou 1'6chec en mathématiques s'inscrivent dans toute une dynamique pro-
pre 3 chaque €12ve et qu'on ne saurait en conséquence relier de fagon
générale la réussite ou 1'échec en mathématiques 3 tel ou tel facteur
affectif, de manidre privilégiée, Seul le facteur “niveau de dévelop-
pement des structures logiques™ a opéré une différence tras marquée en-
tre les deux groupes de sujets.

£n conclusion, cette recherche pose le probl2me des rapports entre le
cognitif et 1'affectif. Au point de vue diagnostique, elle montre
1'importance d‘'évalue~ le développement cognitif et le coté affectif de
1tenfant. Elle souligne que le travail rééducatif doit &tre axé ila
fois sur la dimension cognitive et sur la dimension affective: 11bérer

O
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i'enfant des émotions liges 3 1'échec, réconcilier 1'enfant avec 1‘ac-
tivité mathématique par un minimum de réussites pour renverser 1‘en-
grenage de 1'échec et du désintérét, susciter chez lui une participa-
tion active en 1'amenant 3 découvrir par lui-méme. Elle invite 1'en-
seignant de classe régulidre 3 dédramatiser 1'enseignement et 1‘'appren-
tissage des mathématiques, tout particulidrement en donnant 3 1'enfant
beaucoup de possibilités de manipulations et cela durant tout le cours
primaire. Sur le plan de la prévention, elle incite les enseignants &
repérer trés t&t les él2ves “pré-opératoires™ pour leur offrir une pé-
dagogie correspondant 4 leur “3ge cognitif™, c'est-3-dire un enseigne-
ment qui stimule de plus prés 1'activité des structures logiques et des
méthodes qui les rejoignent plus personnellement.
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CHILDREN'S ATTITJCES TO MATHEMATICS: A PEKSONAL CONSTRUCT APPROACH

Ricky Lucock
Department of Educational Studies
University of Surrey
GUILDFORD GU2 5XH
England

Abstract

Much of the work on how children learn mathematics has been

based on theories of mental development, particularly

Praget's. While mental development is unquestionably one

factor which influences the way in which children learn

mathematics, another, it may be hypothesised, consists of

the attitudes which they bring to their task. This

hypothesis has been investigated on the basis of Kelly's

theory of personal constructs. Preliminary results of the

study indicate that there are indeed relationships between

certain mental constructs and mathematics performance, but

that the concept of 'doing mathematics' itself needs refining,

in that the relationships appear to be different for routine

mathematics and for problem solving. Poscible explanations

for this finding are discussed.
A group of pupils from an English comprehensive school is taking part
in the study. The school was chosen bacause its catchment area includes
a wide range of social backgrounds and because it is the policy of the
school to attempt to bring together, in tutor groups, pupils of a wide
range of ability. The pupils taking part in the study are members of
one such tutor group. They were in their first year, ie aged eleven
whent the study began, They are now in their third year. They have
worked 1n six ability sets (or tracks in North American English) since

the second term of the first year.

The adoption of a personal construct approach reflects the belief that
pupilsdiffer from each other i1n the ways in which they make sense of
mathematics lessons, the roles which they, and others, play in those
lessons, and even what it means to be 'doing mathematics'. However,

a personal construct perspective also embraces the demonstrably obvious
view that two or more persons freqguently cmploy similar constructions
of events and my study as a whole is concerned with both similar and
different constructs to the extent that they affect mathematical

performance. For this paper I shall concentrate on the similarities.
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The work was in three stages. In the first, each pupil was interviewed
tor approximately one hour to prcwide a packground picture ol thelr
attitudes to, and 1deas about school and learning. To avoid the
discussion of factors which I, rather than the pupils, might find
important., personal constructs were elicited using, as elements, nine

of the fourteen school subjects which the pupils were studying at the
time. Each pupil selected a combination of eleaments which would refiect
their own likes and dislikes. The constructs, as they were produced,
were used as a basis for wider ranging discussion. The interviews were
audio-taped., transcribed and analysed. The constructs were analysed

using the Focus grid analysis computer program.

The most interesting finding from this very general enquiry was that
those in the higher mathematics sets tended to generate constructs which
related more to external factors (E}, while those in the lower sets
trended to generate CONStructs which related more to personal factors

(P).

SETS E> P E =P E< P TOTAL
1-2 9 1 2 12
3-6 2 3 7 12

For the second stage, I dealt solely with mathematics. 1 chose a
somewhat different approach, because a trial study with another group
of pupils pointed up the difficulties of eliciting constructs when
mathematical topics were the chosen elements. 1. consequently, mysel f
provided three constructs on which pupils then rated eighteen

mathematical topics on a scale of 0 to 7.

The constructs were ecasy/difficult; 11ke/dislike and useful or not

1n everyday life and work. Pupils were not expected to have objective
knowledge about use. 1t was their ideas that were ol 1nterest because,
in general, pupils so frequently, and justit rably, complain that they

can see no end usc 1in the topic becing studied.

Fot each topic there was 4 card with one or more examples ol the topicC,

including the answers, drawn or wratten on it and this was shown to
the pupils. This method was used partly because 1t 1s well known that

people are far better at recognitaon than at reconstruction and partly
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because years of experience in teaching mathematics has taught me that
pupils tend not to remember the labels given to many of the topics.
As a further precaution each topic was discussed before the first rating

to ensure that the pup:l had some idea of what was being discussed.

Once the topics had been rated the reasons for the placing of each
one were discussed and this provided a means for a deeper insight into

the pupil's i1deas about mathematics.

The aim of the study was to discover pupil's attitudes and beliefs

about learning mathematics. Since most formal mathematical learning
takes place in school, it seemed expedient to use the topics taught

in school as elements. However this meant that the school's or,
arguably, the examination board's concept of 'doing mathematics' rather

than that of the pupil's was being used as a basis fsr the enquiry.

Overall, the pupil's ratings correlated quite well with the setting

of the pupils. The higher the set, the more likely was the pupil to
find the topic easy, enjoy doing it and think it useful and vice versa.
This is hardly a surprising finding given the previous argument and

1t does no more than give conf idence in the validity of the method.

As before, the audio-tapes were transcribed and analysed. The method
was the same for each set of interviews. First the tapes were
transcribed verbatim. Next they were reduced to notes referring to
relevant comments. At present these are being ysed to create s vignétte
of each individual pupil and they have also been used to find shared
attitudes or beliefs in an effort to locate factors which may be of
general rather than individual concern. Progress is being made but

this in not the subject matter of this paper.

With the aim of obtaining a view of the puplls which was both deeper

and more personal the third stage of the study involved the pupils

in problem solving sessions 1in groups of three. The groups were self
selected because this seemed to be the most satisfactory way of ensur ing
that pupiis trusted and felt at esse with those with whom they were
working. An unlooked for bonus was that the groups were all composed

of people from different sets although the two extremes did not come

together. Unfortunately, self selection meant that in only one group
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was there a mixture of boys and gitls.

1 made clear to the pupils that 1t was not their success that wan of
interest but the ways in which they tackled the problems and how they
worked together. The Sessions were clearly different from the classroom
gituation but 1 felt that once the pup:ls had relaxed, become involved
and learned to ignore the camera there would be useful information

to be gained from the approach. The fact that the sessions were
videorecorded meant that not only could everything the pupils said

be carefully analysed but also that silent signs of interest,
involvemsnt or enjoyment or alternatively boredom, frustration,

disinterest or even anger would be on record.

There were nine problems in all. The pupils were asked to try to

consider as many of them as possible, tu reach a conclusion through
discussion and to move on the the next question only when all were
agreed that they either had a solution or wantad to give up tryaing.

A notepad and pen were provided to fac:ilitate the work but only one

of each. The intention was to steer the group away from zndivadual

work. The problems covered several types, as folluws:

Number of problem Type
1,2 Fairly easy, to overcome narvousness
.9 Likely to lead to frustration or boredom

Open ended, misleading without careful analysis
Requiring generalisation

,B Related to probability (not taught as yet)

[T IS R U - R

Requiring physical manipulation of material

The problemson probabilaty were sjncludad because it is a top:c about
which people learn in everyday life and that on physical manipulation
because it could lead to either very close cooperation or totally

individual work.

At the end of each session, before the camera was turned off, 1 had
a discussion with the group about what they had felt about taking part
in the activity and whether or not st had felt like doing mathematics.

Most remarked on how quickly they had forgotten about the camera, how
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much they cenjoyed working in groups and that they did think that the
exercise was mathematical., Also, the majority asked to go through

the questions to see i1f they had been successful or to have them
oxplained if they had not understrad. This invariably meant them giving

up their free time to do so.

As mentioned earlier the aim of these sessions was to gain deeper and
more personal insights into the pupils ideas and attitudes. There

was no intention of measuring success at either an individual or a
comparative level. However, 1 soon realised that although I was testing
affective factors I was in fact in possession of data that tested
problem solving abilities. An analysis of the videotapes indicated

discrepancies between problem solving performance and setting.

To test this, marks were allotted to each problem and each group as

a whole was rated according to their results. MNext the protocols of
Yach group were analysed for indications of each pupil’s contribution
to the success of the solution and the individual results weighted
accordingly. Inevitably there is an element of subjactivity involved
here but having videotapes to view makes it possible to gain a fairly

clear i1dea of who is contributing what.

The pupils are divided between six ability sets; the members of the
lowest three sets are uniikely to gain any mathematical qualifications
before leaving school. And yet, in this group, several performed as

well as their so-called betters.

SET NO IN SET HIGH MEDIUM LOW
1 9 6 3 0
2 5 2 1 2
3 6 k) 1 2
4-6 9 2 3 4

As a result of the second and third stages of my enquiry, I now had
two types of data about attitudes to mathematics, ie one explicit and
one implicit. 1t was not, however, possible to bring them together

because they were clearly based on different concepts of mathematics.
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The [irst used an arithmetic and reproduct ive approach which 1nevitably
involves a large amount of algorithmic learning. The second used the
concept of mathamatics as problem solving. The first, predictably,
correlated guite well, at a general level, with the overall setting
of the pupiis. The sacond did not.

‘
These results suggest that the term *Attitudes towards mathematics®
is too general. It may be necessary to separate attitudes towards
routine work and attitudes towards problem solving. These attitudes
might affect pupils’ work and there may be lessons to he learned from

this. At this stage 1t is possible only to of far two hypotheses.

The first 18 that those with a favourable attitude to problem solving
who are forced into doing routine work, particularly where this involves
learning without understanding, become disillusioned with mathematics
and give up trying. The second hypothesis 1s that abilities at problem
solving and abilities at routine work are not highly corralatad. It

15 quite possible that both are valid simultaneously, but for differen'

pupils.

Both hypotheses are relevant to the ongoing debate about how pupils
learn and, given either hypothesis, the present attempts in Britain
at curriculum reform which are seekiug to give a more important place

to problem solving may lead to a diffarent ranking of pupils.

To sum up. In the three stages of this work 1 have shown firstly that
the children who, according to the school, are more able at mathematics
tend to view school as a whole more on the basis of external than
personal constructs, while the opposite is true for the less able.
Secondly, the mathematically more able children also tended to find
mathematics easior and more useful, and they liked it better. But

1t was the third stage which cast doubts on theze simple
interpretations, for it showed that the concept of ‘doing mathemataics'
used in the first two stages related essentially to routine. If the
concept referred to problem s0lving, then no simple correlation with
the school's perception of the mathematical ability of the children
could be established and 1 suggested two hypotheses to account fox

this fact.
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One final comment. In the problem solving sessions those In the higher

sets tended to show greater confidence than those in the lower sets
and boys tended to shcv more confidence than girls.

1t was particularly
interesting to watch hot

top set boys failed confidently whilst lowver
set girls succeeded with great diffidence.
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A CONSTRUCTIVIST APPRDACH TO RESEARC
ON AT 'TUDE TOWARD MATHEMATICH

Douglas B. McLceod
Washington State Universlty

Abstract

Current research on attitude generally follows a hehaviorist
or empirical tradition. Recently, however, uome fsyciolo-
gists have suggested new approaches that reflect a4 coastruct~
ivist position on attitude. The purpose of this paper is to
discuss hov a constructivist approach could jrovide a
stronger theoretical foundation for research on attitude
toward mathematics. The theories of Mandler and Ykew> form
the basis of the discussion.

In a recent review Leder (in press) presents a £tate-of-vhe-art
report on research related to attitude woward mathematice. der review
prements the complexities of research on attitude, including the
attempts that have been made to provide an adequate theoretical base for
thin research. Most of the theoretical bane has come from behaviorist
psychology or social psychology (Ajzen & Fishbein, 1980). Very little
of the research reflects the constructivist approach thst has become
prominent in research on mathematics leatning. The purpose of this
paper i to suggest how a constructivist approach to attitude could bhe
of substantial help in analyzing how attitudes develop and in making
connections between research on attitude and contemporary theories -f

learning.
RESEARCH ON ATTITUDE TOWARD MATHEMATICS: CURRENT APPROACHES

Research on attitude generally has a foundation in behavioriam, but
it often seems to proceed in rather an atheoretical, empirical fashion.
A typical approach would be to specify certain factors (e.g., liklog,
utility, confidence) that are hypothesized to be important in the
affective domain, and then devise a questionnaire that measures those
factors. The researcher then gathers some datz, examines the character-
istics of the instrument, and applies the appropriate statistical anal-

ysis package. The results are then interpreted and imp!lcations drawn

O
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for practice, but little thought is ever given to the development of a
sound theoretical framework. The driving force in much of this research
seems to be the statistical wmethodology rather than the theory. In
following this statistical model, the researcher seems to assume that
the domain of interest (attitudes, in this case) can be modeled by a
vector jpace, and that the items on the attitude questionnailre will span

the space and produce factors that describe the space adequately.

Although the theoretical foundation for research on attitude has not
been strong, a great deal of useful data has been gathered using these
eapirical methods. Research on attitudes related to the area of gender
differences has been particularly successful. For example, a substan-
tial amount of data indicates that females tend to be less confident
than males in mathematics (Reyes, 1984). Since confidence is an impor-
tant predictor of continuing enrollment in secondary mathematics
courses, this finding has implications for the underrepresentation of
females in more advanced methematics courses and in mathematical
careers. The data on confidence and course selection is quite consis:-
ent across different countries and across different measurement tech-
niques {(Leder, 1986).

Regsearch on attitude has made progress not only in the consistency of
the results, but also in the developwent of more sophisticated models to
guide the research. This line of research has expanded to include
investigations of gender differences in attributions of success and
failure in mathematics (Reyes, 1984). Thc connection between research
on attitude and on attributions (Weiner, 1979) has been particularly
useful in mathematics education, and promises to make further contri-
butions to vur understanding of the relationships among attitudes,

achievement, and gender (Fennema & Petersom, 1985).
RESEARCH OR ATTITUDE: THE NEED FOR NEW APPROACHES

Although research on attitude has produced useful data in at least
some ri{tuations, a new approach to the affective domain could yleid
substantially more progress, especlally in developing better theories
about attitude and in making connections between research on attitude
and contemporary theorfes of lesrning. This new spproach needs to take

into account the view that learners are actively engaged in construct-
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ing their knowledge of mathematics, rather than just absorbing it. Thia
new view of the learner is alrcady having a substantial impact on para-
digms for research on cognitive issues in mathematics learning and
teaching (Romberg & Carpenter, 1986). Now it 1s time for this new view

to influence how we approach research on attitude toward mathematics.

The need for a new view of research on attitude is widely acknowl-
edged among both cognitive psychologists and researchers in mathematics
education. Abelson (1976) notes that research on attitude is confusing
and contradictory, and suggests that "the present state of attitude
theory is frankly a mess” (p. 40). Mandler (1984) observes that re-
search in this area 1s generally not cumulative, and that researchers
have been preoccupied with measurement issues, and neglected the devel-
opment of theory. In mathematics education, Kulm (1980) has asked for
more emphasis on theory development to guide research on attitude
toward mathematics, and numerous authors have noted the relatively weak
relationship between attitudes and achievement in mathematics (Begle,
1979).

THE DEVELOPMENT OF ATTITUDE: A CONSTRUCTIVIST POSITION

Constructivist views of learning often pay little attention to the
affective domain. Recently, however, two leading theorists (Mandler,
1984; Skemp, 1979) have made affect a major part of their constructi-
vist positions.

Mandler (1984), in his analysis of mind and emotion, extends
theory and methods of cognitive psychology to the affective domain. His
view is that affective responses result mainly from interruptioms of
plans or planned actions. In the terminology of cognitive psychology,
the plans come from the activation of schemas, and the schemas induce
actions. If these actions are interrupted, the individual's autonomic
nervous 8ystem responds with some sign of arousal, such as an increase
in heartbeat or a tensing of the muscles. The individual then inter-
prets this reaction of the autonomic nervous system as frustration,

surprise, or some other emotion.

Mandler's emphasis on interruptions seems particularly appropriate
to student performance in mathematical problem solving. When a student
is working on a non-routine problem, interruptions and blockages are

inevitable. The student's interpretation of that interruption will
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depend on the student's knowledge, beliefs, and previous experiences.

Skemp (1979), in his presentation of a theory of learning, pays
special attention to the development of emotion. Skemp's framework dis-
cusees the Importance of goal states (and anti-goal states), and i{denti-
fles eight major categories of emotion. These include pleasure, which
comes from movement toward a goal state, as well as fear (or movement
toward an anti-goal state). Skemp also describes emotions that result
from the ability (or inability) to control one's movement toward a goal
state (or an anti-goal state). For example, he describes confidence as
being able to control movement toward a goal state, and anxiety as the

inability to direct movement away from an anti-goal state.

Buxton (1981) has carried out a major study that investigates the
usefulness of Ske-p‘s ideas on affect. In this study Buxton presents a
careful analysis of adults' affective responses to mathematics, and uses
the term panic to describe what occurs in the minds of many. This panic
i8 manifested both in chaotic reactions to mathematical tasks, and in
the tendency of some people to freeze--to be immobilized when asked to
solve a mathematical problem. In Skeap's terms, the affective reaction
results from the inability to move away from the anti~goal state of

failure on a mathematical task (Skemp, 1979).

Both Mandler and Skemp provide useful frameworks for analyzing
affective responses of mathematics learners. Researchers who conduct
_detailed studies of individual learners should find these frameworks .
useful, For example, Cobb (1985) discusses the role that affect can
play In the development of early number concepts. He compares the
learning of two students who differ in their level of confidence and
their expressions of anxiety. Confrey (1984) comments on the confusion
and frustration that is reported by young women in a special summer
program on problem solving. Ginsburg and Allardice (1984) document the
intense feelings of sadness and futility that low achievers express in
relation to mathematics learning, and call for a renewed emphasis on
affective issues 1in research. Wagner, Rachlin, and Jensen (1984) re-
port how algebra students can get upset and lose control of their solu-
tion processes when they are stymied in their attempts to solve
problems. Each of these studies provides ugeful information on how
interruptions and blockages can produce negative feelings about

mathematics.
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It is important to remember that students have positive as well as
negative experiences with mathemstics, and the theories of both Mandler
and Skemp account for the develépnent of these positive feelings about
mathematics. Although research has tended to concentrate more on the
negative emotions (such as frustration and anxiety) rather than the
positive, a number of people have noted the role of positive affective
factors in learning. For example, von Glasersfeld “1987) notes the
powerful sense of satisfaction that children report when they reach a
satisfactory reorganization of their i{deas. Lawler (1981) documents the
surprise and positive emotions that accompany the moment of insight
when a child sees the ccnnection between two previously unconnected
gchemas. Similarly, Mason, Burton, and Stacey (1982) discuss the
importance of savoring the "Ahal" experience when solving problems, and

Brown and Walter (1983) discuss the joy of making conjectures.
A FRAMEWORK FOR STUDYING THE DEVELOPMENT OF ATTITUDE

The first task for researchers is to analyze the barriers that
children face as they learn mathematlcs, for it 1s these barriers that
prevent a schema from reaching completion (Mandler, 1984) or that keep
a student from reaching a goal (Skemp, 1979). The affective component.
of the children's reactions to these barriers constitutes the raw

material from which attitudes are formed.

The next task for researchers is to describe the affective reactions
of students to these barriers. These reactions can be characterized in
terms of their direction (positive or negative), intensity, duration,
rise time, and consistency (Kagan, 19783 McLeod, in press). When
students respond positively (or negatively) on repeated occasions to a
series of mathematical tasks, their responses become more and more auto-
matic. The role of automaticity is the same in the affective domain as
in the cognitive; human information processing allows certain responses
to become more and more automatic, thus freeing the individual's limit-
ed processing capacity for action on unfamiliar problems or situations
(Resnick & Ford, 1981). As these responses become more automatic, the
theory predicts that the affective reactions will be characterized by
reduced intensity, increased duration, shorter rise time, and greater
consistency from task to task. Once the reactions become consistently
positive (or negative), then the student 1s exhibiting the stable re-

sponse that 1s characteristic of the construction of an attitude.
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If researchers are to understand the development of attitude toward
mathematics, they will need t: use the same kinds of methods that are
now used to understand cognitive development. For example, research
on affect should include the use of indtvidual observations, clinical
interviews, and teaching experiments. Since these techniques are
standard for constructivist researchers, they should be willing to
expand the domain of their interests to include affective as well as

" cognitive constructions.
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ATTITUDES OF TWELFTH GRADERS TOWARD MATHEMATICS

L. Diane Miller, Louisiana State University

Three self-report techniques, the Revised Math Attitude
Scale, a researcher developed questionnaire, and an
interview schedule, were utilized in gathering data about
twelfth grade students' attitudes toward mathematics. In
agreement with other studies, the results of this
investigation fnclude: as students ascend the academic
ladder their attitudes toward mathematics deteriorates;
grades 7-8-9 were identified as the period of time most
influential in the development of students' attitudes
toward mathematics; students perceive mathematics as
useful but are hesitant in specifically describing how it
is useful; a significantly positive correlation exists
between grade point averages and attitudes; and when
considering success as a construct of attitude,
gender-related differences seem to emerge.

BACKGROUND

The amount of research conducted in the area of students' attitudes
toward mathematics has increased appreciably in the last ten years.
The increase in research on attitudes toward mathematics may reflect
the recognition on the part of mathematics educators that poor
attitudes may be behind a decreased enrollment in advanced
mathematics classes fn high school. Another factor contributing to
the increased interest in attitudes is the recognition that certain
groups of students have been identified as not achieving to their
potential in mathematics. Females, minorities, and students from
Tow-SES families have not particpated in mathematics and
mathematics-related activities to the degree that their abilities
predict (Reyes, 1984). Affective variables have been found to be
related to the underrepresentation of these groups in mathematics
classrooms and careers requiring mathematics knowledge.

PURPOSE OF THE STUDY

The primary purpose of this study was twofold: (1) to assess the
attitudes of twelfth grade students toward mathematics; and, (2) to

O

ERIC 171

Aruitoxt provided by Eic:




AN I I I I

-y -
identify factors which contributed to the development of their
attitudes. Other research efforts have documented that as Students
ascend the academic ladder their attitudes toward mathematics
deteriorates (Aiken, 1970, 1976; Begle, 1979; Carpenter, et al.,
1981; Neale, 1969; Reys & Delon, 1968). The intent of this
investigation was to initiate work on explaining why attitudes toward
mathematics seem to decline as students progress through grades 1-12.
Once an explanation is found, research may begin on preventing this
decline and, possibly, on reversing the trend.

DESIGN AND METHODOLOGY

Three primary data collection techniques were utilized in addressing
the purposes of the study. A self-report attitude scale, the Revised
Math Attitude Scale (RMAS) designed by Lewis R. Aiken, Jr., was used
to measure the attitudes of 329 twelfth grade students. The RMAS
score allowed the investigator to divide the population into three
subgroups: Those with a dislike for mathematics (RMAS sccre range
0-29); those with a neutral attitude towards mathematics (RMAS score
range 40-49); and those students who liked mathematics (RMAS score
range 60-80). A second self-report instrument, a 4-item
questionnaire designed by the researcher, was used to ascertain if
the student liked mathematics in elementary school (grades 1-6),
junior high (grades 7-8-9), and high school (grades 10-11-12). The
fourth item asked students to check the one period of time which they
felt contributed most to the development of their attitude towards
mathematics: Grades 1-6, Grades 7-8-9, Grades 10-11-12. The
students who checked Grades 7-8-9 became candidates for interview.
One hundred twenty-six students (38%) identified grades 7-8-9 as the
period of time most influential in the development of their attitude
towards mathematics. Five males and five females were selected at
random from each attitude group. The interview was the third
self-report technique utilized to collect data for this study. The
same questions were asked of each respondent, but the questionnaire
also contained a set of open-ended questions that allowed for probes
of the individual's responses. Other information collected on each
interview subject included the number and types of mathematics
classes they had taken in grades 9-12 and the grades made in these
classes.
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ANALYSIS OF DATA

The analysis of the data collected with the RMAS and the research
questionnaire included means, standard deviations, and tests for
significant differences between subgroups. A Pearson Correlation
between the RMAS score and the mathematics GPA resulted in a
significantly positive correlation {r = .38, p < .05). The four
items from the research questionnaire and the demographic data
obtained were analyzed through regression analysis.. The reliability
coefficient of the RMAS (r = .97) was estimated by the coefficient
alpha method. Analysis of the interview data consisted of

transcribing the interview tapes and studying the responses to search
for trends.

RESULTS AND DISCUSSION

Attitudes as measured by the RMAS According to the RMAS mean
score (39.6) for the original population, the overall attitude of
this particular group of seniors was bordering between neutral and
having a tendency to dislike mathematics. The RMAS scores of 159
students (48%) indicated either a strong dislike (n = 50), a dislike
(n = 47), or a tendency to dislike (n = 62) mathematics. The RMAS
scores of sixty-six students (20%) indicated that their feelings
toward mathematics were neutral, One hundred four studer s (32%) had
an RMAS score indicating either a strong 1iking (n = 16), a liking
{n = 32), or a tendency to like {n = 56) mathematics. An item
analysis of the RMAS resulted in the identification of several items
in which large percentages of the population were responding
negatively (Miller, 1986). Mathematics educators might consider
focusing on some of these items as change agents in an attempt to
alter students general dttitudes toward mathematics.

The distribution of the RMAS scores by sex is interesting because
almost twice as many females have a strong dislike for mathematics as
males (n = 32 vs n = 17), However, three times as many females have
a strong 1iking for mathematics as males (n = 12 vs n = 4). The
numerical differences between the sexes for dislike vs like and
tendency to dislike vs tendency to like are not as great. More males
than females scored within the neutral range (n = 39 vs n = 24,
respectively). Are these data supportive of the contingency
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suggesting gender-related differences in the learning of and
attitudes toward mathematics? Possibly; however, one might also
surmise that females are not as inhibited as males at expressing the
strength of their emotions. The RMAS mean scores for males (40.7)
and femaies (38.5) are not significantly different at the 0.0001
level; thus, refuting any gender-related differences in attitudes for
this particular population.

Attitudes as measured by interview Various attributes of attitude
were discussed during the interview (Miller, 1986). Of particular
interest were the responses when students were asked, "In general, do
you think mathematics is useful?" Twenty-nine of them answered with
a strong "yes." However, when asked why they said mathematics was
useful, their answers were not as inmediately forthcoming. The most
popular first response to the "why" probe was "Oh well, you know,
everybody uses math." Their hesitation in naming a specific reason
why mathematics is useful did not coincide with the strength of their
initial response. With continued encouragement to specifically
explain why they said mathematics was useful, seventeen students
expressed some type of involvement with money; balancing a checkbook,
making change, and comparative shopping were three specific examples
named. Other reasons named included aviaticn (one student was
Tearning how to fly), construction (three students worked part-time
on construction crews), keeping statistics on athletes, using
mathematics in other classes like chemistry and computer science, and
a few students said that mathematics is useful in some Jjobs but were
not specific. The nature of the students' responses to this question
and the follow-up probe suggest that students sense from society, in
general, and parents and teachers, more specifically, that
mathematics is useful, but they are not exactly sure why or how it is
useful.

The interviewer also asked students to describe themselves as being
successful or unsuccessful in the mathematics courses they had taken.
Ten of the fifteen males interviewed (67%) felt they had been
successful in mathematics. Of the fifteen females interviewed, six
(40%) described themselves as being successful in mathematics. The
responses to this inquiry support the arguments of researchers who
contend that sex-related differences in mathematics do exist.

Another factor supporting the existence of gender-related differences
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in mathematics was the comparison of the mean grade point averages
(GPA) between the two sexes. The females interviewed seemed to under
estimate their success in matnematics when compared to their male
counterparts. The mean GPA (based on a 4 point scale; with F = 0 and
A = 4) for the 15 female subjects was 2.47; the mean GPA for the 15
males subjects was 2.03. The ten males who considered themselves
successful in mathematics had a mean GPA of 2.42. The six females
describing themselves as successful in mathematics had a GPA of 2.68.
These data lend support to the “fear of success" construct discussed
by Leder (1985} and others.

Factors contributing to the development of attitudes Grades 7-8-9
were identified by one hundred twenty-six (38%) of these seniors as
the period of time wost influential in the development of their
attitudes toward mdthematics. The data collected in this study,
consistent with the results reported in other studies, indicate that
as students ascend the academic ladder, their attitudes toward
mathematics deteriorate (Miller, 1986). The seventh grade was
singled out by the majerity of the 30 interview subjects as the one
year in which their attitude towards mathematics changed the most.
Some students said they started liking mathematics in the seventh
grade and others said they started disliking mathematics in the
seventh grade. Reasons given for naming the seventh grade as a
critical year focused on the changes between the elementary
curriculum and junior high school. For example, some student: were
bored by reviewing in the seventh grade what had been taught in
grades 4-5-6. Some students who started algebra in the seventh grade
were excited by the challenge of new content. Other students were
discouraged by the amount of work required in the seventh grade,
unlike grades 4-5-6 when "math was a breeze." Students claiming to
have mathematics anxiety, indicated that the seventh grade teachers
were not smpathetic. They only spent an hour a day with their
seventh grade teacher and that was not enough time for the teacher to
get to know them. Other comments included the lack of practical use
for the mathematics studied in grade seven and beyond.

Attitude vs GPA permission was secured to obtain the mathematics
grades of the thirty interview subjects. The ten students in the
ndislike mathematics" category (RMAS score range 0-29) had a mean
grade point average (GPA) of 1.92 (on a 4-point scale; F = 0 and
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A = 4). The ten students in the “neutral attitude" category (RMAS
score range 40-49) had a mean GPA of 2.18. The subgroup in the "1ike
mathematics® category (RMAS score range 60-80) had a mean GPA of
2.67. The Pearson Correlation coefficient indicated a significantly
positive correlation for these two variables {r = .38, p < .058). The
number of students in this sample prohibits the formulation of any
strong conclusions from the differences between the means or the
correlation coefficient. However, the results clearly indicate that
students with a more positive attitude towards mathematics have a
higher grade point average.

Predicting attitudes Can a twelfth grade student's attitude
towards mathematics be predicted? Using the student's sex and the
responses to the four items on the research guestionnaire as
independent variables, a regression amalysis was run with attitude as
the dependent variabie. The best one variable model found that a
student’s response to "Have.you 1iked math in high school?" was the
best predictor of the student's attitude towards mathematics as
measured by the RMAS. This result is not surprising because a
person's most recent experiences with an object would probably
greatly influence the attitude held towards that object.

Consistency of responses One aspect of the study that was
particularly interesting to the investigator was the consistency of
the data collected through two different self-report techniques:
written questionnaire vs oral report. The research questionnaire
asked students to answer the following question: "When would you say
that you developed your present attitude towards mathematics? Grades
1-6, Grades 7-8-9, or Grades 10-11-12." Respondents were instructed
to check one. A1l thirty students selected for interview had checked
Grades 7-8-9. During the interview, 47% of the students gave a
different answer to that question. This result is somewhat
disappointing since it questions the validity of the students’
responses not only on the research questionnaire but during the
interview, too.

SUMMARY

This research has documented that students' attitudes toward
mathematics can be measured and analyzed through a variety of data
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collection techniques. Attitude is a multifaceted construct which
develops over a period of time and under the influence of many
variables. Conversations with students in this study as well as
teachers and other colleagues make this researcher believe that there
is much room for improvement in the attitudes people have toward
mathematics. Before progress can be made toward reversing the trend
of development as students ascend the academic ladder, many
investigations must be conducted to ascertain what strategies would
be most successful in improving students’' attitudes toward
mathematics.,
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A CRITICAL SURVEY OF STUDIES, DONE IN KENYA,

ON THE DEPENDENCE OF ATTITUDES TOWARD KATHEMAT1CS

AND PERFORMANCE IN MATHEMATICS ON SEX DIFFERENCES

OF THE SCHOOL PUPILS

By

E. MUTHENGI MUKUNI, KENYATTA UNIVERSITY

ABSTRACT

Investigations that have been carried out in Kenya
since 1970's upto the present on the dependence of attitudes
toward mathematics and performance in mathematics on sex
differences have sought to find out whether there are
statisticzlly significant differences between school bays
and girls in their attitudes toward mathematics and in
their performance in mathematics. Investigators have, as
well, tried to find out whether positive attitudes toward
mathematics are sipnificantly <érrelated ‘o better per-

formance in mathematics,

O

Results indicate that, during secondary school years,
boys have more favourable attitudes towards mathematics
than girls. Performance in mathematics during
primary school years does not depend on the sex of the
pupil. Performance, however, depend on the sex of the
pupil during middle secondary school years i.e. at 'U!
level stage. At the later stage in secondary school, i.e.
tA' level stage, girls perform better in mathematics than
boys.

In Kenya positive attitudes toward mathematics are
significantly correlated with better performance in
mathematics.

A proposal to deal with this situation is suggested.

INTRODUCTION

Studies on the dependence of attitudes toward mathe-
matics and achievement in mathematics on sex differences
are numerous. In some of the studies significant corre-
jations between attributes have been found. Explanations

as to the causes of the differences have varied from socio-
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cultural theories to theories that attribute them to bio~

logical differences betvsen the sexes.

The view taken by this author is that differences
in attitudes toward mathematics and achievement in mathe-
matics, where attributable to sex differences,cannot be
explained purely in either environmental or biolcgical
terms. They spring from a very complex interaction of
these variables and this causes extremely varied bebha-
viour patterns in school pupils. Mathematics educators are
thus called upon o search for such instructional strate-
gies and practices for teaching mathematics as are likely
to enhance the creation of positive attitudes toward mathe-

matics and raise the level of performance in mathematics.

In thi.'paper research, done in Kenya during the
decades of the '70s and and '80s*, on the dependence of
mathematice performance and attituaes toward mathematics
on sex differences is reviewed and critiqued. Research
questions, methodologies, findings, and further recomme-
ndations are examined. The paper concludes with a proposal
for the kind of research that could be fruitfully carried
out in Kenya, and perhaps elsewhere, in 1light of the Kenyan
experience so far. In 1987, through this paper, Kenyans
have had to pause and take stock of investigations on this
issue and then map out areas of further research where york

could be rewarding if, not more fruitful.

THE_QUESTIONS

Investigations - all done in Kenya by Kenyan doctoral
and masters' candidates - sought answers to three basic

queetions.

*Empirical investigations on the dependence of certain
educational attributes on sex differances in schocl lear~-
ning situations started in 1974 with Eshiwani(1974) study.

)
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(a) Who performed better in mathematics, if that
was the case hool boys or girls ?
(b) Did all school pupils have positive or

negative attitudes toward mathematics ?
If that was not the case, did the sex of the
pupil influence their attitudes toward mathe-
matics ?

(c) Were attitudes toward mathematics and
performance in mathematics significantly

correlated ?

ON SEX DIFFLRENCES AND PERFORMANCE IN MATHEMATICS

Kenyan investigators used some measure of perfor-

mance in mathematics (scores from self-made achievement

test, results from school-constructed examinations,results
from Kenya National Examinations Council (KNEC) records
and tested statistically if there were significant diffe-
nces between school boys and girls in their performance

in mathematics.

Wamani (1980) tested mathematical abilities of 8
to 12 year olds using self-constructed mathematical
ability tests. He found no significant differences in

the performance of the pupils of both sexes.

Samumkut (1986) - used scores from school~construc-
ted examinations, Maritim (1985) - used KNEC records, and
Kapiyo (1982) - used self-constructed achievement and
ability tests. The three investigators used the t-test
to seek for significant differences in performance between
school boys and girls in the age group 13 to 17 year
oldg. They found out that in this age group significant
difference in favour of boys existed. School boys per-

formed better than school girls.

Maritis (1985) using KNEC results found that for the

age group 18 to 19 year olds, i.e, at 'A' level stage,
girls rerformed significantly better than boys in mathe~-

matics.
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In Kenya there, then, exists a situation_where young
pupils (8 to 12 years old) of all sexes perform equally
well in mathematics. Pupils in the early adolescence (13
to 17 year olds) perfora differently in mathematics with
the boys performing better than the girls. Pupils in
their late addescence (8 to 19 year olds) reverse the
earlier situation and the girls perform better in mathe-

matics than the boys in the 'A' level examinations.

These findings are explained in several ways by the
investigators. The most parsuasive would seem to be the
role played by the teacher of mathematics and the availa-
bility of adequate resources in the schools. In elemen -
tary grades the teacher is seen as friendly to all the chi-
ldren and thus treats them equally irrespective of the sex
of the child. In the secondary school prades teachers are
seen likely to be more role preseriptive in pupils' task
assignment. This could bring out readily different sex
role perceptions. These sex role perceptions would include
guch precepts as "nice girla don't do math". At 'A' level
stage learning facilities are uniformly distributed. girls
at this level are motivated to achieve since they have
opted to undertake further studies in mathematics. The

role of the teacher ceases to be all that predominant.

ON SEX DIFFERENCES AND ATTITUDES TOWARD MATHEMATICS

Investigations centred on the question of whether
boys and girls in secondary schools i.e. 13 to 17 year
olds differed significantly in their attitudes toward
mathematicss Investigators used pupils and teachers gque-
tionmaires and the Likert scale to assess attitudes toward
mathematics., The chi-square, percentages and the t-test

were used.

Mbuthia (1986), in a well documented study, found
that overall boys (97% of the sample) have positive at=<i-
tudes toward mathematics as opposed to girls (67% of the
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sample). In further tests he found the difference to be
statistically significant at the 0.05 level of signifi-
cance. The same findings occured in investigations
carried out by Opondo(1984), Otienc (1985), Samumkut(1986),
and Mbugua (1986).

Mbuthia (1986) as well as Mbugua (1986) found out
that all pupils under investigation perceived mathematics
as being of value to society., The boys, however, declared
that they enjoyed mathematics more (94% of the boys) than
the girls (52% of the girls).

Samumkut (1986) found out that girls tended to have
positive attitudes toward mathematics and at the same time

they performed poorly in mat hematics.

Mbugua (1986) found that 57% of the girls surveyed
attributed part of the reason for their liking maths to
parental encouragement. Otieno (1985) found that Su%
of the girls surveyalblamed their teachers for their hatred

of mathematics.

It has been suggested in these studies that further
studies, on how teachers and parents go about encouraging
girls to learn and study mathematics so that positive
attitudes towarc mathematics are created, be done. The
practices identified to be conducive to this enterprise

be further reinforced.

ON CORRELATION BETWEEN ATTITUDES TOWARD MATHEMATICS

AND ARCHIEVEMENT IN MATHEMATICS

Kenyan investigators have sought to find out if

positive attitudes toward mathematics by pupils correlates

with better performance in mathematics.

Parkar (197u) using 13 - 15 year olds assigned them
to control and experimental groups and these were taught
using different instructional strategies (programmed work

cards versus traditional methods). He found that there
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was no significant difference in attitudes towards mathe~
matics betwsen treatment groups but that there was positive
correlation between achievement in mathematics and attitu~

des toward mathematics,

Studies by Kibanza (1980), Samumkut (1986), and
Patel (1985) use the same age-group and arrived at the
same findings. Patel (1985) established that for girls
poor attitudes toward mathematics resulted in poor achie-~

vement in mathematics.

Dizcussions under this question seem to arrive at
a conceneus that there seems a need to develop instruc-
tional strategies and practices in the teaching of mathe-
matics in Kenya that will encourage the creation of posi-
tive attitudes toward methematics for all pupils and es-

pecially for girls in secondary schools.

DISCUSSION
Results of investigations done in Kenya in the '70s'
and '80s' on performance in mathematics attitudes toward
mathematics show that these two important espects of

mathematics education partly depend on sex differences. .

Findings indicate that for the very young in primary
grades performance does not depend on the sex of the pupil.
In early adolescence {,e, during secondary school years
perforsance seem to depend on the sex of the pupil such
that boys perform better than girls in mathematics. At
'A'" level stage, however, girls have been found to perform

better in mathematics than boys.

Except in certain specific areas, investigations
indicate that the majority of boys, during secondary sch-
ool years, have favourable attitudes toward mathematics
and that it is not so in the case of girls in the sawe

age group.
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In Kenya investigations further show that positive
attitudes toward mathematics significantly correlate

with better performance in mathematics.

The question facing mathematics educators is what
can be done about a situation such as this so that half
of the school population is not forever disadvantaged.
That is assuming that knowledge of mathematics is a worth-
while acquistion for all citizens.

PROPOSAL

It is proposed that Universities in Kenya undertake
research, along the following lines, to identify and

encourage the use, by teachers of mathematics, of those

instructional strategies and practices that have been
found successful in the teaching of mathematics for the

majority of children in Kenya.

Step One: Mathematics educators, in groups or
individually, to identify instructional strategies that

have proved, through usage, to be successful in motiva-
ting both girls and boys to like mathematics as well
as pass mathematics examinations at national level. Make

a list of these strategies.

Step Two: Researchars will use the list prepared
above to observe actual strategies and practices of
successful teachers of mathematics teaching the subject
in their classrooms., Researchers will validate. their

list and improve on it.

Step Three: Researchers will proceed to use Semi -
Delphi Technique with a group of teachers in a well

selected sample until there is an acceptable degree of

agreement about the strategies. It is likely that at
the conclusion of this stage some improvement in awareness
and use of strategies and practices used by the better
teachers of mathematics will be acquired by most of the
Q other teachers of mathematics in the sample.
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Step Four: The government or its agencies could
then take over and continue the work initiated by the

Universities.

The important thing is to take the first step. This
author plus two of his graduate students, has done just
that. It is hoped to report some results of this experi-
ment in 1988.

BIBLIOGRAPHY

-CHIRCHIR, J.K. "Survey of Instructional Practices in

Upper Primary Mathematics in Kenya".
M.Ed. Thesis, University of Nairobi, 198u.

ESHIWANI, G.S. "The Effectiveness of Programmed
Instruction, Conventional Classroom Approach,
and Integrated Programmed Instruction in the
Teaching of Probability of High School Students
in Kenya". Ph.D. Thesis, Stanford University,
1974,

KAPIYO, R.J.A. "An Investigation into the Relationship
Between Mathematical Ability and Mathematical
Achievement of Standard 7 Children of Kenya'.

KIBANZA, N.M. "A study of Some Factors Associated with
The Performance in Mathewmatics Among Form II
Pupils in Kenya". M.Ed. Thesis, University of
Nairobi, 1980,

MARITIM, EZRA., K. "Sex Differences in the Vocational
Aspirations and Sex-~Role Perceptions of Primary
School Children in Rural Kenya". The Journal
of Socizl Psychology, 1984, 124, 159-164,

MARITIM, EZRA, K.A. "The dependence of '0' and 'A' level
results on the Sex of the examineprs"., Kenya
Journal of Education. Vol.2 No.l, 1985, p.29.

MBUGUA, Z.K. "Influence of Socialization on Attritudes
Secondary School Students Have Towards Mathematics
Learning".

MBUTHIA, N. "Sex Differences in Attitudes Towards Mathe-
matics". M.Ed. Thesis, University of Nairobi,1986.

OMAR, S.T. "Sex Differences. A svtudy of some factors
involved in the learning of eathematics among
Secondary Form III students jin Kenya, Nairobi
Province". Thesis - M.Ed. University of
Nairobi, 1976.

RIC 1&56

Aruitoxt provided by Eic:




10.

11.

12,

13,

1y,

15,

O

ERIC

Aruitoxt provided by Eic:

- 155 -

OTIENO, D.0.S. "An Investigation of Female Students'
Attitudes Towards Mathematics in Kenyan Seco-
ndary Schools With Reference to Nairobi Area".
P.G.D.E. Project, Kenyatta University,1985.

PARKAR, X.D. "The Impact of the Programmed Work
cards on the Quality of Teaching Mathematics
in the Secondary Schools of Kenya". H.Ed.
Thesis, Nairobi University, 1974.

PATEL, A.K. "A Survey of FProblems of Teaching Mathe-
matics in Secondary Schools in Nairobi,Kenya".

SAMUMKUT, M.L.A. "A Study of Attitudes and Sex
pifferences in Performance of Mock Mathe -
matics by STD 8 Primary School Pupils in
Mointanik Location, Narok District, Kenya".
M.Ed. Thesis, Kenyatta University, 1986.

WAMANI, W.T. "A Study of Mathematical Abilities
Among The Primary School Children in Nyeri,
Kenya". M.Ed. Thesias, Hairobi University,
1980.

OPONDO, L.O0. "An Investigative Assessment on
Students' Attitude Towards Mathematics At
Lower Secondary Level in Schools within
Nairobi Area, Kenya". P.G.D.E. Project.
Kenyatta University, 198u4.




O

ERIC

Aruitoxt provided by Eic:

_l56_

MATHEMATICS TEACHERS' BELIEF SYSTEMS AND TEACHING STYLES:
INFLUENCES ON CURRICULUM REFORM

Janeal Mika Oprea and Jerry Stonewater
Miaml University

The Allen Paragraph Completion Instrument and the
Schoenfeld Belief Survey were adniluistered to thirteen
asecoudsry and middle achocl teachers to assess their cog-
nitive development level (based on the Perry Scheme) and
mathematical belief gystems. Results and implicetions of
this study will be discussed.

Regsearch hss recently begun to ewerge indicating that mathemat~
ics teachera' views sbhout the subject matter, teaching, and learning
influence their clsasroos behavior (e.g. Maiison-Nason and Lanier,
1986; Carpenter, Fennena, and Peterson, 1986; Thompson, 1984). How—
ever, as Thompson uwoted, the relstionship between teschers' belief
dystems snd their instructional prsctices is fsr from simple.
Thompson (1984), for instance, observed inconsistencies between some
teschers' expreased beliefs and their actions in the classroom. A
model that has the potential of clsrifying these incongruities and
providing a theoretical framework for the study of mathematics
teachers' belief systems is Perry's (1970) cognitive development
scheme.

The Perry scheme, which is an outgrowth of Piaget's theory of
cognitive development, is a hierarchial clsssification of “how people
understand or make meaning of their world” (Stonewster, Stonewster,
and Perry, 1987). The nine stages of the Perry Scheme are qualita-—
tively different from one another with each represerting s more com-
plex order of thinking thsn the stage previous to it (For further
details, see Conceptual Framework). From a theoretical point of view,
it is also possible thst one's beliefa about mathematics aight slso
vary as a function of cognitive developwentsl level. Thompson's
(1984) study, for instance, appears to support this hypothesis. Al-
though her study did not focus on cognitive development, Thompson's
reported dsts supplied us with sufficient information to make a "beat
guess” interp-etstion of her subjects' Perry levels. From this, we
found indicstions of a positive relationship between teachers' cogni-

tive devi:lopment level and the degree of consistency between their
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beliefs and instructional behavior. With this in mind, this present
study was designed to explore the relationship between secondary
mathematics teachers' cognitive development and their belief systems
as a first step to discover the extent tc which cognitive development
level is an intervening variable between b:liefs and behavior.

The first phase of this study was the identification and assess—
ment of appropriate paper and pencil instruments to measure mathemat-—
ics teachers' cognitive development and their beliefs about mathemat-
1cs and mathematics teaching. These instruments were piloted with
thirteen secondary and middle school mathematics teachers. The re-
sults and implications of this first phase are the focus of thic
paper.

The second phase will begin in May 1987 with the administration
of these instruments to a control group and participants of the Dis-
crete Mathematica Program (DMP), a project designed to prepare high
school mathematics teachers to incorporate discrete mathematics and
applicstions into their existing curriculum (see Note 1). DMP will
thus serve as a vehicle to address the following research questions:

1. What is the relationship between secondary mathematics
teachers' attitudes, beliefs, cognitive development, and
their clasarocom behavior?

2. What characteristics of the participating teachers are asso—
ciated with their adoption of the proposed curricular and
fnstructional reform?

In addition to the administration of paper and pencil tests, 6 teach-
ers (3 DMP participants and 3 control teachers) with different Perry
pretest ratings, will be interviewed and observed during the 1987~
1988 school year. Pretest resulte of phase two will be presented at

the PME-XI conference.
CONCEPTUAL FRAMEWORK

Perry (1970; 1981) describes a sequence of stages that one moves
through when seeking to "make meaning” out of experiences. In gener—
al, movement is from a "right vs. wrong” dualistic conceptualization
of reality to an understanding that all knowledge is embedded in a
contextual and relativistic framework. The three major positions of
the theory that are relevant here are dualism, multiplicity, and re~
lativism. For a more thorough and complete description of the theory
as it relates to mathematics see Copea (1982), Stonewater, Stonewater,
and Perry (1987), or Buerk (1982).
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Dualism

In this first stage of development, students see the world in
right-wrong, black-white dichotomies. Further, the assumption of the
dualist is that all knowledge is known, that an authority (usually
the teacher) knows it all, and that it is up to this authority to
give the student the right answer.
Multiplicity

Movement from dualisa into multiplicity represents a significant
broadening of the student’s understanding. The student begins to
realize that there might be wore than one “right” answer, procedure,
or perspective, but tends to get lost in the muddle of multiple
righta since there is no understanding yet of the contaextual nature
of deciding which right is best. In late wultiplicity, this "multi-
ple rights” perspective is seen as license for an anything goes
approach. Often multiplistic students will be heard to say, "Every-
one 1s entitled to his or her own opinion on that problem. I don't
know why the teacher thinks her answer is right, mine is just as
good."”
Relativism

As students move into relativism, another major shifs in think-
ing takes place. They finally realize that right anzwers depend upon
context and are now capable of thinking in relativistic or contextual
terms. They understand not only that there are multiple perspectives
on & given problem or topic in mathematics but that they can reason
relativistically about those perspectives. “Truth," as it vere, de-
pends upon the mathematical system in which one is yorking, the

assumptions one makes, or the axioms one accepts as true.

METHODS

Subjects

Thirteen teachers from rural and suburban midwestern school dis-
tricts who are currently involved in two other research projects
participated in the pilot study (see Note l1). The 11 females and 2
males had an average of 17.85 years of teaching experience (s.d. w
8.96). Twelve subjects had completed at least gome graduate work.
Instruments

Each teacher was asked to complete the Schoenfeld Belief Survey
(1985) and the Allen Paragraph Completion Instrument (1983). The
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Allen Paragraph Completion Instrument is an assessment of a person's
cognitive development level as —easured by the Perry scheme. It con~
sists of two essay questions in which subject are asked to evaluate
their educational experience and to respond to a situation in which a
classmate is disagreeing with a professor about a polnt in a biology
book. For this study, the second item was modified by replacing the
work "professor” with "teacher"” and the word “biology"” with “mathema-
tica.” Responses were scored by trained raters who categorized each
response as consistent with a position between 2 (dualistic) and 5
(relativistic) on the Perry scheme.

The Schoenfeld Belief Survey consists of 70 closed Likert-type
and 10 open questions which agsess a person's beliefs about mathema-
tics as well as about teaching and learning mathematics. For this
study, the instrument was modified to include only 57 of the closed
items and nonme of the open ones. Furthermore, four items, based on
Thompson's (1984) finding, were added.

Many of the Schoenfeld items were designed te distinquish be-
tween two possible categories of mothematical belief systems. The
first, Mathematics 18 Closed, asserts that “mathematics 1s a rigid
and closed discipline, inaccessible to discovery by students and
beat learned by memorizing" while tbe second, Mathematics 1s Useful,
asserts that "oathematics is useful, enjoyable, and helps me to
understand things" (Schoenfeld, 1985, p. 16). It was hypothesized
that there would be a positive correlation between the teachers'
Perry position and the Mathematics 1is Useful subtest. Furthermore,
there would be a negative correlation between the teachers' Perry

position and the Mathematics i3 Closed subtest.
RESULTS

According to the analysis of the Allen instrument data, 5 teach-
ers were rated as relativistic (5), 5 as late multiplistic (4), and
3 as early multiplistic (3). Table 1 is the distribution of Perry

position scores by gender and teaching experience.

O
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Table 1
Distribution of Perry Position Scores
By Geader and Teaching Experience

Teaching Experience

0-10 11-20 > 20

Perry level M F M P M F
3 0 3 0 0 0o 0 |3
4 01 0 4 0 0 5
5 0 3 0 0 2 0 |3

Means and stendard deviations of each item on the Schoenfeld
Belief Survey wes found for the three subgroups (i.e. relativiatic is
Group R, lzte multiplistic is Group LM, and early wmultiplistic {ie
Group EN). Suall sample sizes preveant s discussion of significant
diffarsnces betwesn the subgroups; however, several significant
énomolias wers chesrved. Contrary to the hypotheses, subgroup R did
not necessarily rate the Hathesatics is Closed items lowsr (or Hathe-
natice 1is Useful icems higher) than the two multiplistic subgroups.
In fact, several items wers rated exactly oppoaite from what had been
hypothesized. For exsmple, for the Mathematics is Closed item “"math
problems can be done correctly in only one way"”, the means and stan-
dard deviations for this item were as follows: Group R, mean = 2.8,
8.d. = .75; Group LM, wmean = 3.4, e.d. = .45; and Group EM, mean =
3.7, a.d. .47,

Furthermore, the relativistic group tended to have greater vari-
ance on items than either multiplistic subgroup. For instance, while
the mean was 2 for esch group for the item “The validity of mathe-
watical propositions and conclusions is established by the axifomstic
methods,” the atandard deviations were as follows: Group R, s.d. = ,
1; Group LM, s.d. = 0; end Group EM, s.d. = 0.

DISCUSSIONR

Ag the firet step in the exploration of the relationship between
secondary aathemstice teachers' cognitive development and their be-
lief esystems, psper and pencil instruments mexsuring these two vari-
ables were piloted and snalyzed. W¥e found inconsistsncies between
our data and the way we expected the two constructs to be related.
Closer examination of the Allen instruwent lieads us to hypothesize
that Perry levels might be different with regard to how teschers
think about teaching mathematics and how they think sbout the content

of mathematice. Specifically, the second item asked the teachers to
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react to the following statement: "A classmate disagrees with your
mathemarics teacher about a point in the text concerning an answer tO
a problem. They debated off and on for parts of several class per—
lods. Each side of the argument has [ts supporters in the class.”
Several teachers responded to this statement from a pedagogical per-
spective by discussing such issues as power struggle between teacher
and students, efficlent use of class time, and the need to bring clo=
sure to class discussions. However, other teachers responded from a
mathematical perspective by discussing the fmportance of seeing dif-
ferent approaches to a problem. A few teachers addreased the ques-
tion from both perspectives and the two parts of their ansver indi-
cated different Perry levels. Through {nterviews, Buerk (1982)

found similar discrepencies with mataematically anxious women. These
observations suggest that the Perry asaessement {nstrument needs to be
revised to separate out the potentially confounding mix of pedagogy
and content.

The fac: that the relativists' means on most of the Schoenfeld

Beliet Survey items had s higher standard deviation than did the
means of the two multiplistic groups was also unexpected. For exam=
ple, in responding to items about “right answers” in mathematics, we
expected the relativists to converge on an understanding that such
answers are contextusl, not necessarily right and wrong. Yet sone
relativists agreed with this view while other strongly disagreed.
One explanation for this variance 1s that cognirive development and
beliefs {(as measured by the Schoenfeld instrument) are in fact not
related, resulting in a potentially high varfance in responses by
Perry level. On the other hand, {f the two constructs are related,
then this high variance for the relativists can be explained from a
cognitive development perspective. Theoretically, a person can use
reasoning patterns consistent with his or her current level of think-
tng or below, but one cannot use reagsoning patterns above his or her
level- Based on this argument, it is thug entirely consistent with
cognitive development theory that the relativists had more levels

at which to think (5) than did the pre-relstivist teachers (3 and &)

and could fluctuste between these levels. This could account for the

higher degree of varlance for the relativistic group.

The second phase of this study wili be to {nvestigate the rela-
tionship between secordary mathemat ics teacahera’ cognitive develop-

ment, beliefs, attitudes, and clasroom behavior. This investigation
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could have profound implicationa in the area of curricular develop-
ment and teacher education Lf they support Carpenter (1986) assertion
that “teachers' beliefs ... affect how [they] percelve ... [the in-
service] training and new curricula that they receive and the extent
tv which they implement the training and curricula as intended by the
.evelopera” (p. 226). -

NOTES

1. The two projects, The Discrete Mathematics Program and the Miami
University Teletraining Institute, are supported by a grant from
Title II of the Education for Economic Security Act and administered
by the Ohio Board of Ragents.
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PERSONAL CONSTRUCTS OF MATHEMATICS AND MATHEMATICS TEACHING

John E. Owens, The University of Alabama

Repertory grid technique and extensive interviews were used
to i1nvestigate four preservice secondary mathematics
teachers® personal constructs of mathematics and mathematics
teaching. KXelly's Personal construct Theory and Perry’s
developmental scheme provided a framework for the analysis of
the experiential, mathematical, and pedagogical perspectives
through which the preservice teachers interpreted their
undergraduate tecacher preparation Programs and anticipatad
their roles as teachers. cConstructs related to teaching
roles tended to focus on personal, non-intellectual
qualities. Consiructs relating to mathematics were affected
by prior success with pre-col lege mathematics and anticipated
uses of mathematics in teaching roles and were often
discordant with the participants’ perception of subject-
matter preparation at the college level.

Kelly’s (1955) Personal Construct Theory and FPerry’s (1970)
developmental scheme provided a framework for investigating the sources
and nature of the construction systems employed by four preservice
secondary mathematics teachers as they interpreted their prior school
experiences and anticipaied their future teaching roles.

Kelly's theory represents a constructivist viewpoint, recognizing
the learner as an active processor of knowledge--assimilating and
organizing experience through an evolving system of bi-polar 1mages,
termed constructs, that control the way 1n which events are percejived,
This constantly evolving system 1S both modif led Dy experience and
determines how experiences are perceived by the individual.

An 1ndividuals®’® actions represent choices from alternatives aiong
a flexible and frequently modif 1ied network of pathways as the
individual seeks to predict, and thus anticipate, future events.
However, 1t 1S not the pathways themselves, but the constructs that
facilitate, or restrict, the choices of paths that constitute the
individual’s construct system. Kelly developed "repertory grid
technique, * used in this study, as a mcthod of eliciting and
investigating the nature of, and relationships hetween, various

constructs CoOmprising the 1naividuals’ conceptual system.
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Perry’s scheme i3 used as a complement to Personal Construct
Theory, providing a more global framework for describing the
participants’ developing “worldview" as it relates to teaching and to
mathematics. The scheme was designed to describe the intellectual and
ethical development of undergraduate college students and is primarily
concerned with the relationship of the individual with perceived
autherity.

Four major stages of growth are posited: Dualfzm (a dichotomus
good/nad, right/wrong, we/others structuring), Multiplism (a plurality
of answers is perceived but without internal structure), Relativism
(multiple perspectives emerge, allowing for contextual analysis of
events), and Commitment (acceptance of personal responsibility for
choices in Relativism). Alternatives to growth (Escape, Temporization,
ad Retreat) are available to the individual at varjous stages.

DESIGN OF THE STUDY

The study was conducted over a nine-week period during the spring
of 1986. Data were coliected fram each ot the seven secondary
mathematics education majors enrolled in a post-student-teaching
seminar at the University of Georgia. Each completed a series of seven
one-hour interviews and a written task in addition to elicitation and
ranking instrumsents characteristic of repertory grid technique. From
the six students who had jointly progressed through the mathematics
€ducation curriculum four students, representing a range of achievement
on college coursework, were chosen for case studies. .

Interviews were of three types: open-ended discussions ajimed at
developing an understanding of the participants' conceptions of
mathematics and its teaching, focussed interviews for eliciting
participants’ reaction to scerarios of hypothetical secondary
mathematics classroow situations dealing with student mjisconceptions,
and problem-solving sessions designed to investigate the participants’
understanding of major ideas in the secondary mathematics curriculum
and the “socially effective symbols" (Kelly, 1955) with which they
communicate these understandings. Interview data formed the primary
basis for ascertaining the participants’ development relative to
Perry’s scheme and served as a medium for exploration of meanings
ascribed to grid items by the participants.

Repertory grids were administered in two stages utilizing
construct elicitation and final grid instruments. Two sets of initijal
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Tableg S~1 and S-5 il.ustrate one participant's topic and role
ranKings on the final g¢rids and Tables S-3 and S-T the corresponding
correlation matricies. Tables 8-13 and 8-14 relate the sumnary
relationship scores, by participant, for roje and topic constructs.
The compiete descriptions of the elements, abbreviated above in Table
S-1 and S-5, are: for the topic grid - Constructing a proof, Graphing
an equation, Solving a word problem, Solving an equation, Working with
fractions, and Probability and statistics; {for the role grid - A
typical secondary mathematics education major, A typical mathematics
professor, Your best mathematics teacher, Yourseif, A typical high
school mathematics student, and Your worst mathematics teacher.
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elicitation instruments, one eliciting role constructs and the other
topic constructs, were completed by the participants prior to the first
interview. Each set tnvolved the presentation of triads of teaching
roles or mathematical topics which the participants were instructed to
&roup in the following manner: "Consider the three topics (roles)
presented. Describe some way in which you view two of the topics
(roles) as simtlar, yet different from the third," For example, asked
to group a favorite high school! mathematics teacher, a favorite college
mathematics instructor, and a disliked high school mathematics teacher
the participant xight group the two favorites by describing them as
“encouraging® 1n contrast to the disliked instructor who was perceived
as "intimidating”.

Descriptors used by the participants to characterize the
similarities and differences supplied a range of bi-polar constructs
for the resulting 'fmal §rids. Participants were asked to use these
constructs to rank, along a Likert-type scale, a selection of roles
(topics) representing teaching (mathematical) elements (TABLE S-1 and
5-3). Role and topiCc elements were chosen from common themes voiced by
the participants during the interviews.

Grids were analyzed using procedures suggested by Fransella and
Bannister (1977). Correlation matricies (Tables S-1 ana s-5),
relationship (varjance) scores, and cluster graphs (Figures S-t1 and S-
2) were constructed for each participant’s role and topic grid.
Summary charts of relationship scores (Tables 8-13 and 8-14) and
cluster graphs (Figure 8-1) comparing participants across elements and
topics were constructed for cross-case comparison.

Relationship (var‘lunce) scores play a pivotal role in personal
construct theory. These represent the explained variance from each of
the constructs on the final grids and reflect the relative "intensity”
with which constructs impact on the participants' interpretation of
experience (Fransella and Bannister, 1977). A construct with a higher
relationship score is thus posited to represent a more global
inf luence, or control, on how the individual interprets events, Table
6-13 and 8-14 provide the relationship scores and ranking by
participant for the role and topic grids.

RESULTS

While constructs in Fersonal Construct Theory are bi-polar (e.g.,
“encouraging/intimidating” ), only the “likeness" poie (e.g.,

O
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»encouraging”) of the construct 1is given here for breviety. Comments
relating to a participants' positive or negative connotation of a
construct refepr to the stated pole. For example, 1f Laura is described
as viewing "easy” in a positive sense, this refers to the connotation
she attributes to the liKeness end (“easy") of the construct
“Easy/difficult.” Judgments of positive or negative Views were based
on interview data and correlations with other constructs.

The findings reported here focus on similarities and differences
In constructs and worldviews held by twe of the participants: Susan and
taura. Each Ls a twenty-two year old white female with a high (3.37
and 3.80, respectively, on a 4 point scale) grade point average, from a
middle~-class background, and actively invoived in religious and
athletic endeavors.

Constructs of Mathematics. On her topic grid, Susan's most

*intense* constructs, based on relationship scores, were "varied,“
"advanced, ® "most useful," "most liKed," and "abstract.” Susan viewed
each of these constructs i1n a positiive sense, Laura'’s mcst intense
constructs consisted of "easy, " "creative, "advanced" and "easiest to
learn" (tie), and "best at.” Laura viewed “creative" and “advanced" as

negative aspects and the remaining three constructs as positive.

FIGURE 68-1
SWMARY CLUSTER GRAFHS - TOPICS
EASY/DIFFICULT X MOST USEFUL/LEAST USEFUL

EASY EASY
SUSAN o LAURA -1- 9
1= -t 4
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9 14 =-1- -10, 14
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-] - 1 -] -

- | - 13 -] -

DIFFICULT DIFFICULT

1-invigorating, 2-easy, 3J-abstract, #-easjest to learn, 5-esscntial,
6-varied, T-advanced, B-most useful, 9-best at, {0-organized,
11-conclusive, 12-exact, i3-creative, i4-most liked, 15-easy to teach
Cluster graphs can be used to graphically portray relationships
between constructs for an individuals' system. Coordinates
represent the signed variance (x 100) between the constructs chosen
for the axes and the remaining constructs. A comparison of Susan's
and Laura's graphs (Figure 8-1), with veasy/difficulty forming the
primary (y) axis and “most useful/least useful” the secondary (x)
axis, shows a strikingly different trend for the two participants.
To Susan, constructs related to secondary mathematics topics that
are viewed as "most useful” also tend to encompass those that are
viewed as “difficult." For Laura the opposite tendency exists.
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Susan's constructs suggest a view of mathematics that values
complexity, academic achievement, and ajplication, and one in which she
considers her own preferences to play a role. Interview data supported
these findings, suggesting Susan was in the process of developing a
relativistic view of mathematics--characterized by reflection and the
use of alternative viewpoints,

These characteristics were evident in her approach to student
scenarios and problem-solving situations (she would typically question
the context and meanings of the situation/ problem before expressing a
view) and in her response to the study itseif (each week she would want
to discuss ideas that she had developed based on the previous session).
Susan easily alternated between express'ng her perception of a “teacher
view" of a situation and a “student view."

Laura's more "intense* topic~grid constructs suggest a view of
mathematics that focuses on simple, straight-forward procedures which
she can easily accomplish through easily learned routines. Incerview
data suggested that Laura conceived of mathematics as a vehicle for
"performance, " an area in which she had received constant praise but
held little meaning outside the classroom coitext.

Laura’'s reactions to student scenarios typically involved an
attempt to repeat strategies “her (cooperating) teacher” had used. Her
approach to problem-solving situations was marked by attempts to apply
learned teciniques, often replying "1 should remember how to do this, "
and a lack of alternatives when she did not readily recognize a
solution strategy.

Laura's position on Perry’s scale was deemed to be that of “Escape
1n Multiplism" where she finds her "identity in carrying out
aszignments of external authority by performance." From this
perspective “creative* and "advanced" mathematics can be threatening to
her self-perceived mathematical abilities. “Easy,* “easiest to learn, "
and “best at" suggest constructs supportive of success in accomplishing
assigned tasks.

Constructs of Mathematics Teaching. Susan’s five highest rated
constructs from the role grid were "encouraging" and "motivating* and
"ingquisitive® (tie), and "respected” and "reliable® (tie). Laura's
were “"respected, ™ “encouraging” and “interesting" (tie), “motivating, "

and “"flexible." All were viewed as positive aspects by each
participant. Each evidenced an *idealized” view of a favorite former
mathematics teacher, with Susan rating her "best" mathematics teacher
first on 12 of 17 constructs and Laura rating this person highest on 10

O
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of 17. Each demonstrated self rankings that suggested a close
1dentification with their "best* teacher. Both participants described
themselves as having a strong social orientation to teaching; scores
reflective of more intellectual concerns (e.g.. “intelligent,”
nabstract, " “complex”) ranked low on both partic.pants' role grids.

Susan's highest rating on "inquisitive" prcvides a contrast
between the two participants' perceptions of teaching; "inquisitive"
was the lowest-ranked construct on Laura's role grid, Susan's approach
to teaching is an active one in which she sees herself as a decision
maKer, capable of maKing judgments on content and methodology. Laura
however, is passive in her approach, deferring to others for decisions
on content and methodology. v*Flexible, " which ranked fourth on her
role grid, was interpreted by Laura as an ability to readily follow
instructions from those she perceived to be 1n authorisy.

CONCLUSIONS

The cases of Susan and Laura, only partially discussed here

h:ghlight the broad differences in perceptions of teaching and of
mathematics that can exist between two ostensibly similar participants
in a teacher education program. Other case studies (Owens, 1987)
suggest that these individuals are not ends of a spectrum but represent
part of a complex array of beliefs held by preservice teachers.

The constructs through which preservice teachers view mathematics
and mathematics teaching are important determinants of how individuals
\nterpret their undergraduate experiences and anticipate their teaching
roies, These constructs are integral to the individuals® developing
worldviews which perform an important function in structuring their
roles as professionals. Knowledge of preservice teachers constructs
and woridviews can provide teacher educators with understandings of how
individuals perceive their undergraduate experiences, and should play a
central roie in the design and conduct of these programs.
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BELIEFS, ATTITUDES, AND EMOTIONS:
AFFECTIVE FACTORS IN MATHEMATICS LEARNING

Douglas B. McLeod
Washington State University

Abstract

Current research on the role of the affactive domain in
mathematics learning takes a variety of forms. Some
researchers focus on the beliofs about mathematics that
are held by students or teachers. Others focus on the
attitudes of mathematics learners. A third group is
beginning to look at more visceral, emotional responses to
mathematics. This paper responds to the research on
affective issues that is reported in this volume, and
suggests directions for future research.

Research on affective issues is well represented in this volume. There
are 13 papers that deal with affect and its relationship to mathematics
learning and teaching. This paper will deal first with issues of terminology,
and then continue with some commaents on each of the papers. Since the
papers are required to be brief, and since research on affect is notoriously
difficult to communicate accurately, the possibilities for misinterpretation
are many. It seems to me that short papers like these may constitute a
form of projective test; readers are likely to see in the papers reflections
of their own interests. 1 hope that this reader has not imagined tao much of

his own interests in the papers. | also hope that the authors of the papers
will not find too many errors in my comments.

DESCRIBING THE AFFECTIVE DOMAIN
The difficulties of saying what we mean in the affective domain are
well known. In a recent paper, Reyes (1987) outlines the misinterpretations
that occur when psychologists and researchers from mathematics education
try to discuss affect. Her discussion makes a number of suggestions
regarding terminology in the affective domain that | will try to follow here.

The affective domain is used here to refer to a wide range of feelings
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and moods that are generally regarded as something different from pure
cognition. The main terms used to describe the affective domain are
beliefs, attitudes, and vmotions. These terms vary from “cold" to *hot" In
the level of intensity of the feelings that they represent. They also varyin
their stability; beliefs and attitudes are generally thought ‘o be relatively
stable and resistent to change, but emotional responses to mathematics may
change rapidly. For example, students who say they dislike mathematics
one day are likely to express the same attitude the nex! day. However, a
student who is frustrated and upset when working on a non-routine problem
may express strorig positive emotions just a few minutes later when the
problem is soived. Finally, although itis impossible to separate student
responses into cognitive and affective categories, some of these terms have
a larger cognitive component than others. For axample, beliefs seem to
involve mainly cognitive processes that are typically built up over a long
period of time. Emotional responses, hiowever, may involve little cognitive
processing, and their rise time can be very short. So the terms beliefs,
attitudes, and emotions are listed in order of increasing affective
involvement, decreasing cognitive involvement, increasing intensity, and
decreasing stability.

Sometimes researchers get involved in arguments about whether
cognitive pracessing can be separated from affective plocessing. A similar
argument exists about whather one dominates the other. In this paper | wil
assume that affect and cognition are inextricably linked, and that we cannot
separate the two. Howcver, the presence of both thought and feelings in
mathematics students at all times doas not imply that the two domains are
always equally powerful. Sometimes we are more influenced by affective
factors, sometimes less. Now that we have established some preliminary
groundwork, let us try to defina the three terms: beliefs, attitudes, and
emotions.

Baliefs about mathematics generally involve very little affect, and are
frequently based as much on cognitive responses as on teetings or affective
responses. Beliefs about self rnay have more of an affective component, but
in general beliefs will be viewed as primarily cognitive in nature. For
example, students may have beliefs about the usefulness of mathematics, or
about their role as mathematics learners. For further discussicn of the role
of beliefs in mathematics learning and teaching, see Reyes (1987),
Schoentfeld (1985), and Silver (1985).

Attitude toward mathematics is used to refer to feelings about
mathematics that are ralatively consistent. For example, attitude will be
used to refer to how much students like mathematics, and to how confident
they feel about doing mathematics. Attitudes may have a component that is
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a belief, but they are distinguished from beliefs by the feelings that
accompany the beliefs. For further discussion of alternate definitions of
attitude, see Leder (in press) or Reyes (1987).

Emotion is used to describe affective reactions that are more intanse
than beliefs or attitudes. Emotions generally involve some physiclogical
arousal (tense muscles, rapid heartbeat) and some redirection of the
individual's attention. Typical emotions would include joy, anxiaty,
frustration, and surprise. For further discussion of emotion, see Mandler
(1984),

The papers have been grouped into three categories, depending on
whether they deal primarily with beliefs, attitudes, or emotions. Of course,
many papers deal with more than one of these, and no doubt alternate
classifications are prssible. However, | think that this means of
categorizing the papers will be useful in finding interesting comparisons
among them. Wa begin with papers that deal with beliefs.

STUDENTS' AND TEACHERS' BELIEFS ABOUT MAYHEMATICS

Research on students' beilafs about mathematics has became much
more prominant in recent years, especially in research on the waching of
mathematical problem solving (Silver, 1985). Student views ¢
mathematics can often have a major impact on their performance, as
Schoenfeld (1985) has noted. Most of this research has focused on
secondary school students (15 years and okder), but some investigators have
begun to look at younger students. Among these investigators are Kouba and
McDonald in this volume.

Kouba and McDonald have begun a coordinated research program to’
determine what students believe is part of the domain of mathematics. This
research started with elementary school students and their beliefs about
what constitutes mathematics, and has now continued with junior high
school students (ages 12 and 13). As one might expect, students at this age
describe mathematics in terms of their experiences in mathematics
classrooms. These experierices are often limited to typical textbook
exercisas, so students frequently fail to see the mathematics in a
particular setting when that sutting is ditferent from what is found in most
textbooks. New teachers are often surprised that they have to spend so
much time answering questions like "Why do we have to learn this stutf?"
Given students' limited conception of the domain of mathematics, perhaps
their question is more legitimate than we realize. if they had a more
mature understanding of what really constitutes mathematics, they would
have a better understanding of why schools require mathematics.
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Bliss and Sakonidis report related work on student beliefs about fruth
in various kinds of domains from mathematics to religion. These students
(aged 11 to 16) generally agree that mathematics and science have a lot of
truth in them, and are less certain about history and religion. The empirical
and logical nature of rathematics seem to be the major sources of these
judgments, and it was a relief to see that only a few students attributed the
truth of mathematics to the fact that the teacher said it was true.

Both of thase studies on student beliefs provide useful data that help
explain how student perceptions of mathematics develop. Both studies
provide the kind of broad picture of student beliefs that can result from
statistica; studies of questionnaire data on relatively largo numbers of
students. | hope that futurae studies will continue to gather data in this
way, and also gather some other kinds of data that will supplement that
which is reported here. For example, more detailed case studies of a fow
studonts would help make the data presented here more real, espacially for
a constructivist audience. Another strategy for making the data more
meaningful would be to provide more cross-sectional or longitudinal data,
thus allowing readers to make the comparisons between different ages that
would allow us to see these beliefs develop over time.

Two other studies (by Owens and by Oprea and Stonewater) deal with
boliots about mathematics, but these two focus on the beliefs ot teachers.
Hoth studies use the Perry Scheme as a structure for the analysis of
teachers' baliefs, and both supplement that scheme with related data from a
socond theoretical framework. Also, both studies use small sample sizes
whare the emphasis is on gathering substantlal amounts of qualitative data
on only a few subjects. Presenting this kind of qualitative data in seven
pages is a very difficult task, and both authars have clearly worked hard to
do the best job possible under the circumstances.

Owaens presents convincing data on how the peliefs of two of his
subjects can differ substantially, even when both appear to be very similar
on other dimensions. Some of the data were presented in compact and very
complex grids that were relatively opaque for me; | suspect that the
attempts to quantify the mostly qualitative data require more space to
make clear than was available here. Oprea and Stonewater have collacted
data that should be helpful in revising their instruments and their
theoretical framework, even though the results which they obtained were in
conflict with their expectations.

A major problem in the work on teacher beliefs is the lack of an
appropriate theoretical framework. Although the Perry Scheme has some
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appeal, | am uneasy with its application to mathematics education. Even the
recent revision and expansion of the scheme (Belenky, Clinchy, Goldberger, &
Tarule, 1986), which tries to improve the theory's application to women as
well as men, seems to miss some of the relevant aspects of mathematical
beliefs. It seems to me, for example, that the scheme needs to take into
account the specific requirements of tha discipline of mathematics,

including its logical structure and complex ways of representing concepts. |
am also uneasy with an agproach that does not take into cansideration the
subjects’ specific knowledge of mathematics or their level of general

ability, and how these kinds of knowledge may influence their performance
on measures designed {o classify people into categories of dualism,
multiplicity, or relativism. The efforts to suppiement the Perry Scheme

with other framewaorks (by Kelly and by Schoenfeld) are certainly heipful.
However. | am left with the fesling that these frameworks also need more
development and refining before they will provide an adequate structure for
the analysis of teacher baliefs.

ATTITUDES TOWARD MATHEMATICS

Research on beliefs has been troubled by the lack of adequate theory,
and the same may be said for the work on attitudes. But one area of
accomplishment has been the research on how attitudes toward
mathematics differ when we compare girls and boys (Leder, 1986). The
work of Makuni makes a substantial addition to this area. In this paper,
which is based on a substantial program ={ research carried out in Kenya,
we find that gender-related differences carn be identified in bne more
country, and that the pattern of these differences is generally quite similar
to what has been reported in Australia, North America, the United Kingdom,
and other areas. The developmant of effective ways to address these
differences deserves high priority all around the warld.

Further research along these lines is reported by Miller, who used three
separate techniques in assessing the attitudes of twelfth graders. The use
of muitiple measures is a strength of this study; however, the scales
developed by Fennema and Sherman (1976) would have been useful in making
this study more comparable to others in the field. Also, the
Fennema-Shermarn scales provide ways to measure more of the varied facets
of the attitude construct than does the Aiken scale.

A major contribution of the Miller study is its investigation of the
genesis of negative attitudes toward mathematics. The data from this
study suggest that seventh grade is an important point in the development
of attitude, a finding that agrees with other research in this area. This
finding should encourage the support of current efforts to focus
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intervention strategies at the early adolescent age group.

A related paper by Lucock deals with both beliefs and attitudes. This
work discusses beliefs about the usefulness of mathematics as well as the
attitude of liking mathematics. A strength of this study is that it allows us
to differentiate student responses that focus on routine mathematics from
those that deal with mathematica! problem solving of a nan-routine sort.
Other aspects of the study range widely over a number of topics that are
difficult to summarize briefly here. Although the study lacks the kind of
technical features that would provide more assurance of the quality of the
data, the results conform in general to other studies about the development
of attitudes toward mathematics.

EMOTIONAL FACTORS IN MATHEMATICS LEARNING

The remaining papers on affect deal with somewhat more emotional
issues, ranging from mathematics anxiety of some degree of intensity to
emotional responses that have a physiological aspect to them. We begin
with the papers on mathematics anxiety.

The work by Lacasse and Gattuso provides us with the results of their
experienca in running workshops on mathematics anxiety. Their analysis of
the problem shows good practical knowledge of "mathophobes”, and makes a
rumber of useful suggestions for providing instruction that alleviates the
fears of the anxious, especially *h0se who are adult students. This research
is very much in tune with related work on mathematics anxisty in that it is
based in practice, not in theory. One of the nice features of this work is
that it makes use of the expertise of both psychologists and mathematicians
as they address a truly interdisciplinary problem.

in a related study, Evans reparts on adults' anxiety about mathematics,
including their scores on the MARS scale. Again, | would be more
comfortable with the more extensive measures that are a part of the
Fennema-Sherman scales, but the MARS instrument does have its adherents,
mainly from counseling psychology. More important than my preferences in
instruments is the fact that this study, like several of those discussed
above in the attitude section, presents consistent data on gender-related
differences in affective responses to mathematics. In general, these
diffarences indicate that women express more anxiety than men, and that
this difference persists even when the women tend to be more tatented in
mathematics than the men. Moreover, the unfortunate underrepresentation
of women in mathematical careers seems to be one of the results of these
differences in affective responses.
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The intarviews that were a part of the Evans study provide an
important part of the data. The subject who referred to "panic” in
describing his affective reaction to doing sums in public reflects exactly
the kind of emotional response found by Buxton (1981). In an extensive
study of these extreéme emotional responses, Buxton provid:.. a model of
how to study mathematics anxiety. The wok has a strong theoretical
foundation, and yet speaks directly to the needs of mathematics education
for improvad practice in dealing with anxiety in the mathematics classroom.

Coutts and Jacksan report a study on parsonality variables that are
related to success avoidance in mathematics. The notion of success
avoidance is a useful concept that grew out of work by Horner in the 1960's.
Research on surcess avoidance has been interesting, but not as successful
as originally hoped. It seems that investigations of a single variable like
success avoidance are unlikely to provide as rich a picture of student
behavior as we need. This study uses 22 personality variabies to look for
relationships between these charactaristics and success avoidance. The
fact that significant relationships were found with two variables is not

surprising, but fortunately the data make sense in terms of our practical
experience.

The paper by Ligauit takes a psychoanalytic perspective on
mathematics anxiety--quite an unusuai perspective for research in
mathematics education. Although | find the Freudian interpretations of the
students' views of the relationship to the father to be quite extreme, |am
favorably impressed by several aspects of this paper. For example, the role
of the unconscious has recaived very little attention in research on
mathematics education, even though mathematicians like Hadamard suggest
that the unconscious plays a central role in mathematical problem solving,
Some cognitive psychologists (Mandler, 1984) are also attempting to bring
back research in this area, so perhaps the time is right for a more serious
look at this topic. Also, Legault reports the use of projective technigues to
assess affective factors; previous attempts by Fennema and others to use
these kinds of techniques met with little success, but perhaps researchers
in mathematics education should give them another try. One final aspect of
this study that i liked is that it combines Piaget and Freud in an interasting
way. This kind of healthy eclecticism is good for research in mathematics
education.

The last paper that | will discuss also deals with mathematics anxiety
and also uses interesting and unusual {for mathematics education) theories
and measuring techniques. Gentry and Underhill base their work on
Bandura's ideas about anxiety, and include measures of muscle tension, as
well as attitude scales, in their efforts to assess the emotional side of
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mathematics learners. Although this work may seem a hit exotic to some, i
am encouraged by the results, and | see it as a model for the kind of
exploratory research that is neaded on affective issues in mathematics
learning. The importance of the physiological measures is emphasized by
the fact that there was little correlation between a traditional attitude
measure and the measure of muscie tension. it seems likely that these two
measures are tapping into very different aspects of the affective domain.
The instructional interventions that were used in the study were well
specified, and directly related to currently prominent theories. The
cognitive restructuring strategy is very much like what Meichenbaum (1977)
would recommend, and Mandler's (1984) theory would be quite relevant to
the use of the modified progressive relaxation intervention. Moreover, both
of these intervention strategies are directly related to the techniques used

in some of the current workshop efforts on the topic of mathematics
anxiety. Further research along the lines presented by Gentry and Underhill
seems to me to be a major step forward in research on the affective domain
in mathematics, and especially research on mathematics anxiety.

The thirteenth and fina! paper (by McLeod) deals with a constructivist
approach to the development of attitudes toward mathematics. It attempts
to use cancepts from cognitive science to show how attitudes could develop
out of the basic emotional responses that are the foundation of Mandler's
(1984) theory of affect. The paper fails to pay sufficient attention to the
role of beliefs in the developriient of attitudes toward mathematics, but
otherwise | find myself in general agreement with the author.

DIRECTIONS FOR FUTURE RESEARCH

In the limited space that is left to me, | would like to discuss briefly
two maijor issues for future research, specifically the need for better
theory and the need for multiple methodologies in the study of affective
issues in mathematics education. | will also suggest some specific problem
areas that need further elaboration and more atterition than they have
received so far.

The major weakness of current research on affective issues in
mathematics education continues to be the lack of a strong theoretical
foundation for the work. This observation has been made on many occasions
by many different people, and | believe that we are now in a position to
make some improvements. Mandier (1984) has made a significant effort to
bring research on affect into the mainstream of work in cognitive
psychology and cognitive science. Since he takes a constructivist point of
view, Mandler's views seem pagticularly appropriate for discussion at the
PME conference. Meichenbauin (1977) also presents a theoretical position
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that is cognizant of and consonant with the currently dominant paradigm of
cognitive psychology. Skemp (1979) also does a good job of taking affect
into account in the development of his theory of learning; since his work is
closely tied to both mathematics and to developmental psycholegy, his
theory has specia! relevance for the the psychalogy of mathematics
education. Finally, Weiner (1986) has developed a theory of affect that
builds on current research in social psychology. Weiner's work has bean the
basis for the most successful rasearch done on affective issues in
mathematics education (Reyes, 1984; Fennema & Peterson, 1985). Most of
this work has been done in the cuntext of research on gender-related
differences.

There are a number of other theorias that are also useful, and many of
them are referred to earlier in this volume. However, the four listed above
are my first choices. There are many other theories (for an overview, ses
Strongman, 1978), but these four seem to me to be the ones that are most
retevant to mathematics learning and teaching. Of course, each of these
theories needs to be tailored and refined to meet the needs of research in
mathematics education.

In addition to concerns about theory, we need to develop and refine a
variety of research methods that will fit the needs of our theories.
Research on affect is still dominated by paper-and-pencil instruments, even
though research on the cognitive processes of students has long since moved
on to extensive use of more clinical methods. Many researchers have chasen
to supplement their questionnaire data with individual interviews, and a
few have even chosen to use measures of physiclogical changes that are
indicators of affect. Both of these choices are welcame as we try to
provide a better picture of the affective domain and its influence on student
performarice. | would also suggest that we use some of the techniques of
our colleagues in psychology and anthropalogy, including closer
investigation of facial responses. Some researchers rely almost entirsly on
facial expression as an indicator of emotional rasponse (Mandler, 1984), a
position that | do not hold. However, good educational research needs data
from a variety of perspectives, and obtaining videotapes of facial
expression seems much more suited to educational research than same of
the other biomedical methods that may be a standard part of the
psychological laboratory,

In the area of research on beliefs about mathematics, we need to learn
more about the methods of anthropologists, and how they determine the role
of culture in student performance (D'Andrade, 1981). In the study of
attitudes, we need more than just questionnaires and statistical analyses of
the data. In the study of the emotional side of mathematics learning, we
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need mare and better ways to measure students physiological responses and
facial expressions, as well as strategies for measuring other indicaters of
the more intense affective reactions that many students exhibit in relation
to mathematical tasks.

In closing, } would like to suggest three topics that deserve special
attention in research on affective issues in mathematics education. First,
current research on the teaching of higher-order thinking skills and
non-routine problem solving needs to pay mo7e attention to affective issues.
These more intense intellectual activities are often accompanied by more
intense affective reactions, and we need better data on student responses in
this area. Second, we need to pay more attention to the role of affect in the
life of working mathematicians. For example, recent research by Silver and
Metzger (1987) points out that aesthetic considerations play an important
part in the decisions that research mathematicians make in solving
non-routine problems. Mathematicians frequently talk about "pretty”
problems or "alegant” solutions; we need to investigate teaching strategies
that will help students develop these desirable characteristics. Finally, the
current smphasis on affective influences and gender-related differences
needs to be strengthenad and expanded. | suggest that all studies of atfect
should incorporate gender as a part o their concern. Substantial progress
has already been made in building our uncerstanding in this area (Fennema &
Peterson, 1985; Reyes, 1984), but more progress is needad if we are to do
our best in dealing with educational inequity and with correcting the
underrepresentation of women in mathematical careers.
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LA PENSEE ALGORITHMIQUE DANS L'INITIATION A L' ALGEBRE
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Maurice Garangon, Université du Guébec a Montréal

RESUME

Nous pensons qu'il y a licu de fonder I'apprentissage de
l'algebre sur des strrxctures cognitives déja présenteesgchez
les éléves, et quune facon d'atteindre cé but est de leur
progoser des problémes externes aux mathémat iques mais a
"potentfel algébrique” et de les inciter, lors de la
formalisation, & [l'utilisation de noms significatifs
concordant avec 1a sémant ique du probléme.

D'autre part nous Croyons qu'en général on passe trop vite de
la situation @ modéliser a la r:grésentation algébrigue et
aux manipulations syntaxiques necessalres 3 larésolution.
Pour faciliter cette transition et le développement des
structures  cognitives appropriées, DOUS  Propasons
J'utilisation de représentations algorithmiques
intermédiaires réalisables a I'intérieur d'un “environhement
algébrique”  Informatisé basé sw un langage de
programmmation dédié.

L'algébre occupe généralement une place importante dans les programmes
denseignement des mathématiques au niveau secondaire; par ailleurs,
I'apprentissage de l'algébre semble causer beaucoup de difficultes aux
éleves qui Ventreprennent. Dans ce court article, nous essalerons
¢'identiffer certains problémes rencontrés par les débutants, d'en discuter
les causes possibles, et de proposer certains ¢1éments de sotution. Dans
ce qui suit, nous désignerons par "algébre élémentaire” l'algébre
enseignée au niveau secondaire: l'aigébre élémentaire comporte donc
minimalement 'algébre des polyndmes en une Indéterminée, mais aussi les

tonctions linéaires, quadratigues, trigonomeétriques, exponentielles et
logarithmiques.

LES TROIS ASPECTS DE LA DEMARCHE ALGEBRIQUE

(1 importe tout d'abord de préc.ser le cadre conceptuel que nous avons
adopté. Dans la pratique de la démarche algébrique, nous distinguons trois
aspects principaux: syntaxique sémantigue interne et séemantique externe.
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Lorsqu'il s'agit de reconnaitre le type d'une formule (exemple: un polyndme
de degré trols), deffectuer des manipulations formelies correctes oy
erronnées (exemple: remplacer (3 + b)2 par a2 + 2ab + b2 ou par a2 + b2 ),
ou de choisir d'appliquer une régle de réécriture en fonction d'une stratégie
heuristique (exemple: pour résoudre I'éguation 3x + 2 = 7, soustraire
d'abord 2 aux deux membres de I'équation), nous nous trouvons en présence
de l'aspect syntaxique. 1l est facile de constater I'hégémonie des
pratigues syntaxiques dans I'enseignement actuel de I'algébre élémentaire:
Il s'agit 13 de méthodes abstraites et puissantes en vertu de leur
généralité, mais dont 1a ralson d'étre échappe le plus souvent aux éléves
débutants,

Il est plus difficile de décrire I'aspect sémantique interne de I'algébre
elémentatre, peut-8tre parce qu'il n'apparalt clairement qu'en algebre non
élémentaire.  Considérons, par exemple, 1a recherche d'un modéle
ensembliste rendant vraie I'identité a+(b*c) = (a+b}*a+c): on est alors
amené a spécifier un domaline ou les variables ab,c prendront leurs valews
possibles, alnst quune Interprétation des symboles + et * via des
fonctions binalres sur le domaine déja spécifié. Dans notre cas, on peut
choisir comme domaine I'ensemble des parties d'un ensemble X, et
interpréter + (respectivement: *) comme la fonction qQui assocte & un
couple de sous-ensembles de X lew  différence symétrigue
(respectivement: lew intersection).

En algébre élémentaire, le domaine de variation est toujours un ensemble
de nombres (Intervalle de nombres naturels, entiers, rationnels ou réels)
qui trés souvent n'est pas précisé, et les opérations ont une interprétation
canonique invartable: en réalité, on est en présence d'une interprétation
ensembliste unique (et des diverses sous-structures induites par
Certaines restrictions du domaine). Ainsi I'aspect sémantique interne de
T'algébre élémentaire se résume~t-il en des choix judicieux du domaine de
variation des vartables (exemple: I'identité log(x*y) = log(x) + logly) n'a de
sens que si x et y sont positifs, méme si le membre de gauche est défini
Quand x et y sont tous deux négatifs) et au calcul numeérique (évaluation).
On peut exprimer cect en disant que la semantique interne voit les
expressions algébriques comme des fonctions (toujours algorithmiquement
calculables) définies sur des ensembles de nombres, éventuellement
représentées par des tableaux de valeurs, des graphes cartésiens, ou des
algorithmes de calcul.
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Avec l'aspect sémantique externe, nous quitions le domaine strictement
mathématique pour nous Intéresser dune part aux représentations
algéuriques (mathématisations, modélisations) de situations non
mathématiques ou de problémes algébriques narratifs (c.a.d. énoncés en
langue natuwrelle), et d'autre part aux interprétations dactivités
algébriques (exemple: manipulations formelles) en termes des contextes
représentés. Cet aspect retiendra particuliérement notre attention car
cest a ce niveau que I'éléve est suceptible d'établir des liens entre ses
propres structures cognitives et les concepts algébriques quon lul
propose, de construire une signification pour ses activités algébriques.

Nous pensons que I'apprentissage des rudiments de Falgebre doit se fonder
sur des structures cognitives déja présentes chez les éléves et dont la
~distance” aux concepts a construlre n'est pas trop grande. Dans ce
contexte, une approche prometteuse consiste a proposer des
situations-problémes externes aux mathématiques mais a ‘potentie!
algebrique” et d'inciter a des généralisations successives, obtenues en
dohnant des noms significatifs explicitant 1a nature générale des “objets”
en présence, comme dans |'exemple sulvant:

3 * 5 =) 15

3 objets *  5dollars par objet - 15 dollars
nombre d'objets  * 5 dollars par objet - prix payé

nombre d'objets  * cout par objet - prix payé.

Remarquons que les expressions de I'algebre ¢lémentaire (avec leurs noms
de variables "abstraits™ tels a, b, ¢, x, y, ) résident a un niveau
dabstraction plus élevé en ce quelles généralisent une classe de
situations-problémes: par exemple, I'équation algébrique X %y = 2
généralise autant 1a situation précédente que la situation

longuew" de 1a base * longueur de 1a hauteur -> alre ¢u rectangle. -

LES PROBLEMES NARRATIFS

Comme NouS venons de le voir, les problémes algébrigues narratifs nous
semblent jouer un rdle trés important dans la construction des concepts
fondamentaux de lalgébre chez les éléves débutants. Depuls plusieurs
années, des chercheurs tentent de modéliser les processus cognitifs mis
en oeuvre pour traduire en équations des problémes algébriques narratifs.
Ce travail a débuté avec Bobrow (1968) qui a développé sur ordinateus un
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programme appelé STUDENT. Paige et Simon (1966) ont démantré que le
processus de traduction directe utilisé par STUDENT approxime le
traltement par certains individus des probiémes narratifs algébriques;
mais Hs ont aussi souligné quune traduction directe ne peut rendre
compte du processus humain de résolution qui S‘appule sur des
connalssances sémantiques propres au language naturel. En nos propres
mots, le traitement effectué par STUDENT est exclusivement syntaxique
alors que I'humain utilise aussi une sémantique externe. Dautres
recherches dans ce domaine ont soultgné le rdle des schémas dans la
représentation des problémes algébriques narratifs (Hinsley, Hayes et
Stmon 1977, Mayer 1980; Schank 1982). En dépit de ces progrés
théoriques, les enseignants en mathématiques sont relativement dépourvus
quand 1) s'agit a'aider les éléves 3 représenter les relations des problémes
algébriques narratifs.

Par ailleurs, les chercheurs ont récemment fait de grands progrés dans la
modélisation de la fagon utilisée par les jeunes enfants pour représenter
et résoudre des problémes arithmétiques narratifs. Ces modéles, te) celul
développé par Kintsch et Greeno (1985), construisent une représentation
d'un probléme narratif qui incorpore 1'information requise pour le résoudre,
En d'autres mots, 1a représentation spécifie 'opération 3 effectuer, telle
F'addition, 1a soustraction ou le dénombrement d'objets. Cette théorle a
été perfectionnée par Larkin (1986) qui a distingué trols phases dans le
precessus de construction d'une représentation. Dans la premiére phase,
I'enfant 1it les mots du probléme et en constrult une représentation
interne de base, qui correspond directement a la situation physique
décrite. Dans la phase suivante, 1! ajoute de nouvelles relations
mathématiques (en se basant sur ses connalssances antérieures). La
représentation mathématique résultante suggére un calcul particulier qui
est effectue lors de la troisiéme phase. Selon Larkin, 1a phase de
représentation mathématique peut étre escamotée quand I'enfant tente de
calculer (phase 3) en se fiant directement a la représentation de base
(phase 1).

On peut constater une disparition semblable de 1a phase de représentation
algébrique lorsque des éléves tentent d'écrire une équation (phase 3) en se
flant sur une représentation de base apauviric d'un probléme algébrique
narratif. Les approches usuelles denseignement ne semblent pas doter les
éleves de moyens de construlre des représentations mathématigues
adéquates pour les problémes algébriques narratifs. Selon une étude
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récente (Clement, Lockhead et Soloway 1980), Vutilisation dun
environnement informatique mettant l'accent sur une Ssémantique
procédurale active des équations semble fournir une méthode puissante de
construction de représentations mathématiques efficaces. Clement a
montré que 1'apprentissage de la programmation sur ordinateur aide les
studiants 3 se former des représentations mathématiques de certains
types de problémes, en Incitant & une approche algorithmigue dans
'établissement d'équations.

UNE iNTRODUCTION A L' ALGEBRE

Rappelons que naus voulons partir d'activités significatives et motivantes
pour l'éléve, et quil est par conséquent hors de question d'introdulre le
symbolisme algébrigue autrement Que comme W codage de probiémes en
rapport avec les expériences antérieures de I'éléve. Nous pensons que lors
de I'introduction des concepts alpébriques, on passe trop vite de 1a
situation A modéliser ou du probléme narratif 3 la représentation
algébrigue et quil y aurait lleu de passer par une sulte d'étapes
intermédiatres en vue d'éclairer et de facilites éventuellement ce
processus. Nous avons déja mentlonné une premiére étape, consistant a
utiliser des variables dont les noms sont significatifs par rapport 2 la
situation-probléme A I'étude. De plus, 11 semble pius factle pour le
débutant d'utiliser 1@ mode impératif (basé sur I'affectation informatique)
plutdt que le mode déclaratif (basé sur I'égalité mathématique): ainsi au
lteu d'affirmer que le colt total égale le produit du nombre d'objet par le
¢oQt unitaire, 1) semble plus simple de décrire comment calculer le coQt
total en multipliant le nombre dobjets par le codt unitaire. On est ainsi
amené A représenter le probléme a résoudre coimime un programme
constitué d'une Suite d'affectations sizaples (évitant ainsi au déiutant les
difficultes liees A 1a composition d'opérations dans une méme expression
et 2 l'application des régles de priorité des calcul) portant sur des
variables (ayant des noms significatifs) dont les valeurs peuvent étre
spécifiées au Gépart par l'utilisateur (variables d'entrée) ou affichées a la
I1n de lexécution (variables de sortie). Qutre les possibilités d'exécution
et de trace donnant une rétroaction a I'éléve sur I'adéquation du programme
3 1a situation-probleme étudiée, cette représentation Informatique est
suceptible de faciliter grandement la recherche de 1a ou des solutions du
probléme, ce qui est un facteur de motivation non négligeable pour Véldve.
Dans ce contexte en effet, la recherche dune solution peut prasque
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toujours se ramener & cerner des valeurs a donner aux variables g'entrée
de sorte que deux ou plusieurs variables de sortte deviennent égales; pour
le débutant, ceci est heaucoup plus accessible que les manipulations
formelles habituellement employées.

NOUS nous proposons donc Ge créer un “environnement algébrique” basé sur
un langage de programmation dédié qui pourrait servir de représentation
intermédiaire permettant notamment:
* demettre en évidence les variables pertinentes du probléme
*  de désigner ces variables par des noms significatifs
(mais aussi de permettre éventuallement des abbréviations)
* de pouvoir faire appel A des variables intermédiaires
(présentes en Informatique mais ignorées en mathématigues)
®  donner un sens dynamique aux variables en fonction des exécutions
possibles du programme
(demande de valeur en entrée, affectation suite a un calcul)
* de trouver une ou plusiews solutions sans nécessairement devoir
fare appel & des méthodes de manipulations syntaxiques
(méthodes de recherche numérigue ave: heuristiques)
Par des observations et des interventions auprés d'éiéves en interaction
avec cet environnement informatique, nous NOUs Proposons de vérifier son
Impact sur le développement des stratégles cognitives de construction des
représentations algébriques.

Notons que cette représentation d'un probléme narratit par un programme
falsant 1a transition avec I'écriture algébrique usutlie n'eést qu'une étape
dans notre vision algorithmique de I'apprentissage de l'algébre. On peut
aussi voir une équation (reliant deux expressions) comme I'assertion de
I'équivalence de deux programmes, et les manipuiations algébi-iques comme
des transformatlons de programmec préservant 'équivalence. Mais nous
touchons fct les aspects sémantique interne et syntaxique de
lapprentissage de l'algébre: cecl fera éventuellement Iobjet de
communications subséquentes.
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Abstract

ON THE DEEP STRUCTURE OF FUNCTIONS
i
|
|
|
|
|
|

The computer program Green globs was analyzed for effecting a
global understanding of transformations on functions resulting from
altering the coefficients of its algebraic representation. Particular
efforts were made to tie together the graph of a function with its

| aigebraic ruls. Two groups of students worked with the software;

: one group worked in a highly structured environment with the
computer being used to illustrate and reinforce specific
transformations. The other group discovered the effect of the
transformations alone. Statistically significant differences between
the two groups were not obtained. Test results and interviews
indicated that, overal, transformations in specific cases were
understood by both groups, but that a general, globai
understanding eluded them. The potential of using this sort of
microworld type environment is discussed.

OBJECTIVE

One of the major goals of school and college mathematics is to lead students to
a sound understanding of the major underlying notions associated with the graphing
of functions. In particular, the structyred relationships between the graphs of
functions arising from each other under simple transformations are important in this
connection E.g., students should be able handle the following types of tasks:
- to graph functions such as |f(x)[, f(x-a), F1(x) and similar ones from
the graph of a given functlon f(x) (without algebraic description);
- to graph simple ratlonal functions such as (x%-4)/(x+2) or
(x2-2)/(x+1) after determining, by inspection, their asymptotes and
local discontinuities;
- to discuss the graphs of functions such as r(x)=x2-5|x|+6 by relying
on thelr symmetry properties.
Important as these goals are for understanding the deep structure of functions and
thelr graphs, they are usually not a,hieved through the curriculum. The purpose of
this paper Is to analyze, from a cugnitive viewpoint, activities which lead students to
understand such functional relationships.
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THEORETICAL FRAMEWORK

The theoretica! background to our work is given by three complementary
research strands which have been developed over the past few years.
(i) The theoretical framework for analyzing aspects of the function
concept proposed by Dreyfus and Eisenberg (1984];
(ii) Experimental evidence about student misconceptions on function
concepts obtained by Vinner [1983],
(iii) The constructivist approach to facilitate abstraction via microworlds
as developed by Thompson {1985|.
According to (ii), a function is typically considered to be an expression or an
equation. Students view graphs per se as peripheral to the function itself, as an
additional ioad: and if they can avoid dealing with them, they will A group of pre-
service teachers were asked to present a graphical argument for developing the usual
formulae for the coordinates of the vertex of a parabola given by y=ax2+bx+c. The
expected response of setting the first derivative equal to zero was obtatned. Then
graphs of equations of the form y=a(x-p)2+q were discussed; afterwards the
students were again asked for a graphical method for finding the coordinates of the
vertex of a parabola. Once again, they returned to the first derivative. The

relationship between the graphing activity and the coordinates of the vertex
completely eluded them.

METHODOLOGY
The teaching of the function concept should be designed with the above
considerations in mind. As teachers, we have a twofold task:
(2) To transmit to the students a more well-rounded concept of what a
function is, namely an abstract mathematical object having any of
several concrete representations, one of the most useful of which is a
graph, and
(b) To teach students to recognize those situations where graphical
processing of functional relaiionships is more efficient than algebraic
processing.
Point (iu) above has produced evidence pointing to the potentiai of mathematical
microworlds for promoting abstraction The present work is in keeping with these
results. It uses the commercially available software Green Globs [Duzdale, 1982|.
This software presents a set of points in the plane and the student is supposed to
generate a graph traversing neighborhoods of these points. By focussing on the
effect of changing particular parameters in the equations, insights and generalizations
on the deep structure of functions is, theoretically, obtained.

O
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On the basis of the theoretical background and the properties of the software, we
arrived at the following hypotheses for this study:

Ilypotheses

(1) Understanding the relationship between the algebraic and graphical
representation of a function 1s facilitated by the activity of
discovering and specifying in algebraic form graphs which traverse
given regions.

(2) The influence of changing the parameters of a function on its graph
can be understood by structured activities as described above.

_’_{ -y || N
5. Given. the graph of y==f(x). AU
The graphs below were obtained CEIN erRE L
from that of y==f(x). Match each 1) N LT
graph with its formula. FEERBEE I I
(Five different funtions were given T 'P'/- N
in the test. two of them are 'L .Hﬁ- N
shown here.) P YT
is v
|u| TTT TT TS y=f{x)-1 y=f{x}+1
;“| A - r_'_l 1= y=f{x?1) y=f{x2|-1)
NTUHCT ‘—1‘1:“ . y==2f(x y=%f(x}
) X i)l o T y=f(2x y=f({%x
FHEGHN T y=-1(x y==f(-x)
ﬁ- : N a ‘Hf } | y=|qu5| y=f -|XI)
ye 13 T i 1 y=|{f{x
El'i“".t‘[':{:f T ﬁf B
4 INNEN g 1T IT; T NNt T
6. Given: A set of threg graphs which fit ;;K_ J4AL ) / ]
the for:nula y=sa{x-d}“+e. Write down, / /| 1A
which of the parameters a, d, e are _“'_\"_‘ 1 1/N

identical for the three graphs in the |- -
sketch. AN
(Six different sets of three graphs were
given in the test, only one of them is
shown here.)

10. Write next to each formula which one

of the four ¢graphs in the sketch fits 4

it "

O y=x2-2x+1 ‘

O y=1:x

O y=x2—25 2
O y=1+x

Figure 1: Representative Test Questions
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Procedure

Two matched groups of 8 students each were chosen from 45 eleventh and
twelfth graders in an academic high school The students were chosen and matched
on the basis of their scores on a pretest and teacher fecommendations. Within each
group of eight, the students were paired according to their performance on the
pretest, the two strongest ones together, and so on. The groups used the Green
Globs software, in pairs, for six 50 minute sessions spread over four weeks. In these
sessions, Group A was free to choose functions to p'ay with, help being provided by
the tutors only when requested The activities in Group B were highly structured-
In each session, Group 8 students were directed to use a certain type of function
and to investigate the effect of changing the parameters of these functions Such
effects were then discussed with the group as a whole. As a consequence, Group 8
actually used the software somewhat less than Group A.

The actions of the students were followed in detail and fecorded by an observer.
After the end of the Instructional period, a posttest was administered, the posttest
was identical to the pretest Representative test questions are listed in Figure 1.
Morcover, one student from each pair was interviewed for about 30 minutes; the
interviews were Semi-structured; while predetermined questions and hints were being
used as guide posts, an effort was made to keep the discussion flowing freely.
Representative interview questions are listed in Figure 2.

1 Given f(x)=x3-3x2, et e(x)=f(x+3). Find g(-2).
(This question was accompanied by a graph of f(x)).

In the accompanying figure the graph of the
function  y==f(x) is given.  Sketch

qualitatively the graph of the function
[N g(x)=1/1(x).

Figure 2. Representative Interview Questions

While the wrtten tests focussed on achievement with respect to the skills under
investigation (the influence of parameters on graphs and the effect of
transformations on graphs), the nterviews were designed to uncover the reasoning
processes employed by the students in order to answer the given problems. The
analysis of the observer’s records, pre- and posttest scores, and the interviews
comprise the data for this study

o 223
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RESULTS

At the outset of the instructional period, students in both groups worked solely
with hLnear functions. Their linearity-boundedness was very strong, in spite of
extensive exposure they have had in thelr studies with other types of functions.
Markowits, Eylon and Bruckheimer [1986] noted this gravitation to linearity in junior
high school students, but the strength to which it was observed with these advanced
students was surprising. Only after being explicitly and repeatedly required to do so,
did the students experiment with other types of functions: polynomials and absolute
value functions. And even then, they were frequently coming back to the linear, and
jater quadratic functions. This tendency, amazingly, was least strong among the
weakest pair in each group. In fact, while the strongest students tended to spend 3

lot of time designing expressions according to their needs, the weakest ones tended
to proceed on a purely experimental, often somewhat arbitrary fashion, just trying
out what happens if they type in a certain formula. As a consequence, the weaker
students were more hikely than the stronger ones to work with more complicated and
more advanced functions; 2 typical example they used was f(x)=|x3-45+x2-x| (note
the order of the t,erms). They would, however, have but the most elusive idea of the
graph to be drawn by the program. Overall, the "what if not* sort of thinking as
described by Brown and Walter (1969) was not internal to the students: The better
ones were wo hesitant to experiment with unfamiliar functions while the less able
ones experimented with new formulae without any attempt at thinking them through
beforehand.

The discussion of the pre- and posttests will focus on those questions which
concern our main interest: the effect of changing parameters and the
shifting/ stretching vransformations f(xx3), f(x)xa, f(xax), +af(x). These auestions
constituted 70% of the test and 100%% of the interview. Henceforth these guestions
will be called non-standard. The standard questions included algebraic computations,
graph feacging and graph identifications such as in Question 10 (see Figure 1). The
test results were not statistically different for Groups A and B. Therefore the
combined resuits are listed in Table 1.

Table 1: Mean Percent Subtest Scores

Questions Pretest Posttest
Standard 711% 7%
Non-standard 24% 50%

Hypothesis (x) appears o be borne out, even if less strongly than could have been
expected. The students did make progress, during the instructional period, on the
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very difflcult topics that were addressed. On the non-standard questions the
students doubled their scores; that is, understanding the effect of altering the
parameters of a function is facilitated through the Green Globs software. But their
overall 50%) score on these questions indicates that this link is still not very strong.
A more detailed analysis of the test results reveais that on Question 6 they more
than trebled their scores with only reiatively slight improvemient shown on Question
5. The familiarity of the graphs used in Question 6 may be responsible for these
differences. In Question 5 the students had to deal with a higher level of abstraction
tecause the functions were given graphically only, and did not correspond to any
equasions known o them. Hypothesis (2) can not be accepted on the basis of the
test results alone. Soth groups improved approximately to the sama axtent. It thus
appears that the activities with Green Globs in general caused this improvement
rather than the structuring of the activities which was particular to Group B.

The interviews focussed in particuiar on the extent to which the students had
established the connection between the graphical and the algebraic representation of
functions. Almost ali students did adopt a visual mode of operation; this mode,
however, was often on a purely intuitive level; in most cases, an integration between
the visual and the analytic mode was achieved hy only three out of the eight
students interviewed. The others did not fully link the rule of s function (ivs
algebraic representation) to its graph (its geometric representation). Although they
could confidently discuss the graphs of specific linear functions, thay found it
difficult to specify which among Several graphs satisfied y==ax+b with a>1 and
b>1. This luck of global understanding manifested itself on all questions except
those with quadratic functions: While not a single student missed Question 10 (see
Figure l). it emerged from the interviews that the advantage of working with
quadratics In the form a{x-d)2+e rather than ax?+bx+c was recognized by more
than haif the students (evenly divided between Groups A and B).

DISCUSSION

One of the goals of the Green Globs software is to place the emphasis on the
geometric representation, subordinating to a8 lesser role the sigebraic rule, rather
than vice-versa - which is the way things are usually handled in school. The direct
link between the two representations established by the software, has helped the
students in the study progress towards establishing an analogous mental link.
Overall, the understanding of this link has, however, remained vague for more than
half of the students.

This study has to be viewed as one of a series of similar studies, which have all
been undertaken within the theoretical framework of mathematical microworlds (see
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(i) In each of these studies, the goal has been one of achieving & process of
abstraction on the part of the stud~nt; all these studies have met with only partial
success [Dreyfus & Thompson, 1985; Dreyfus, 1986]. The question naturally arises,
whether the theoretical framework needs ta be revised in view of these limited
successes. At present, this does not seem to he appropriate; in fact, all three
studies referred to were rather short term. Extrernely high level activities are
required for the processes involved in abstraction in general, and in particular in the
conception of a function as an abstract mathematical object, and the establishment
of the connection between different representations of this object. It is hoped that
longer and more systematic exposure to dual and tripie representations of
mathematical objects will achieve a clearer effect. But, at present, this is simply
speculation.
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BELIEVING IS SEEING:
HOW PRECONCEPTIONS INFLUENCE THE PERCEPTION OF GRAPHS
E. Paul Goldenberg, Ed.D.
Education Development Center, Inc.
and Educational Technology Center, Harvard University

Contrary to a common assumption that graphs of function are somehow in-
herently more accessible to students than are symbolic presentations—aiter
all, students have spent years perceiving and drawing visual forms before
they first encounter algebraic symbols—visual presentations have their own
conventions and ambiguities. Perceptual strategies that are sufficient for
interpreting scale and relative position in real-world scenes are inappropriate
when dealing with the infinite and relatively featureless objects in coordinate
graphs of simple polynomial functions. Aided by software that dynamically
links graphical and symbolic representations of function, our preliminary
clinical studies show that perceptual illusions and shifts of attention from
one feature to another obscure some of what the educational use of graphs is
supposed to illucidate. The paper is illustrated with specific examples of
illusions with linear and quadratic graphs.

Software that allows students to probe the nature of function by exploring with linked
graphical and algebraic representations has recently been proliferating for three reasons:
there is a perceived need to increase the emphasis on graphing in the algebra curriculum; it
is theoretically reasonable to suppose that appropriate visual representations help invest
meaning in, and thereby promote the leaming of, the symbol system with which algebra
students must cope; and computer technology lends itself well to this application.

As is often the case, new technological capabilities bring new questions to the fore.
While investigating what had initially seemed to be straightforward questions like “Does
this kind of software help students learn to make fewer of the canonical errors?” my
colleagues and I found ourselves faced with several surprises and some new questions
about fundamental issues in how people perceive graphs.

Common-sense supports the notion that the use of more than one representation of
function will help learners understand what remains less clear when only one representation
is used. Presented thoughtfully, multiple linked representations increase redundancy and
thus can reduce ambiguities that might be inherent in any single representation, Algebraic
expressions specify the exact relationship, but give neither single examples nor a visual
gestalt. Graphs provide a gestalt within the limits of the graph but leave precise details
unclear, Tables provide examples of the mapping but do not specify its nature. Said
another way, each well-chosen representation views a function from a particular
perspective that captures some aspect of the function well, but leaves another less clear:
taken together, multiple representations should improve the fidelity of the whole message.

The theoretical arguments presented above are reasonable enough, but they may not be
valid. In fact, little is known about the cognitive impact of multiple linked representation in
algebra and until recently it has been impractical to examine these suppositions clinically.

Our early experiments have shown that students often misinterpreied what they saw in
graphic representations of function. Left alone to experiment, they could induce rules that

Q
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were wrong. We began to study how siudents develop strategies for using graphical
information to give meaning to symbolic representations of function and vice versa. To
what, in fact, do students attend when they look at graphs? What are the misconceptions
that they bring with them and how do these misconceptions distort the information that they
glean from the graphs? And how, if at ail, do these distortions affect a student's ability to
use graphical representations of function to inform the understanding and manipulation of
the symbolic algebraic representation?

200

These questions grew ini-
tially out of observations
with two bright, successful,
second year algebra siu-

dents. They were shown the

computer screen illustrated

38— - e in figure 1, and asked to
discover the polynomial

(-2x2 + 30x - 108) that

created this graph. They

were encouraged to use

whatever means they chose,

L_“ including making computer-

pon . supported measurements on

Figme 1 2 the graph and trying out va-
tious expressions and observing differences between the graphs they created and the target.

Although the students had not previously tried to match a target graph, they had had
some prior experience using the software to explore graphs of this type and had built up
some expectations about the effect of the constant term and the coefficient of x2 in the
graph of a parabola. Appropriatcly, their first analyses made use of these notions.

They believed that something they referred to as “shape” was controlled by the coef-
ficient of x2 and alse knew that if the parabola was “upside down,” the coefficiont must be
negative. After a single experiment trying to match the target parabola they reasoned from
its “poiniiness” that its x2 coefficient must be -2. They also had a notion of “height" and
believed it was controlled by the constant term., They chose the valuz of the constant term
b, estimating where the parabola crossed the y-axis. Seeing that the y-intercept was
roughly midway between the origin and the bottom of the graph (at -200), they tried - 100,
Althougk: they believed that the x-coefficient controlled left-right placement, they said that
they had no idea what value to use for it and so they made an arbitrary choice and picked 2.

Figure 2 shows the graph of their function (solid) superimposed on the target parabola
(dashed). Their parabola appeared to have the same “shape™ as the one they vere trying to
match, so they felt confident in their choice of the coefficient of the x2 term. Further, as
well as one could see at this scale, the two curves had the same y-intercept, which fit their
criterion for the choice of the constant term, Only the x coefficient remained undiszovered.

Yet, despite the confirmation of two of their reasoned choices that we may derive from
the graph, and, remarkably, despite their expressed awareness that their third choice was
the least trusted even from the outset, they saw the graph as disconfirming their choice of
the constant term. Recall that they chose the constant term by examining the y-intercept—a
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measure intended eventually to insure that the two functions had the same height for
identical values of x—but they coded what they were doing as determining “height,” not y-
intercept. When we compare the “height” of two objects, we do so by attending to
comrespoixling features of the two objects—in this case, the vertex.

200 The visual impression so
dismayed them that they capi-
tulated and “‘corrected” the
constant term from -100 to 4
to account for their “error.”
The new expression was far-
ther from the target but was
-39 P2 3@  more satisfying because its

/ kY graph was just as “high” as
i 5 the graph that they were
Y trying to match (see fig. 3).

It is important to characterize
what happened clearly. To
$ 1

Figure 2 ~F0w 2% 2% - 100 ':;::: ;i?s;v:fmwcmzm.s ?&wpc‘,f
rabolas are equally “high” at
200 the y-axis. But in their cyes,
figure 2 was disconfirming.
What we believe influences
what we see in the graph,

J——

The way in which the illusion
distracted them from their
N originally correct analysis of
~ the problem is reminiscent of
the not-quite-conserver in the
-.. Piagetian task in which equal
y quantities of juice are poured
4 into glasses that differ in
| i width, Initially two identical
Figwe 3 -288 ~2x%+ 2% + 4 glasses are filled with juice
and the child verifics that
they are the same. When the juice from one of these glasses is ther poured into a narrower
container, its level rises higher than the level in the other original glass. Young children’s
thinking in this situation seems dominated by the visual impression: the new glass must
have more. Older children and adults witnessing this experiment are guided more strongly
by their expectation that quantity remains invariant despite appearances, In between, there
is an intriguing stage when a child might well expect that after pouring from one container
10, the other the amounts would be the sume, but would then give in—even spontancously
expressing surprise as the algebra students did—to the perception. Logical thinking has
developed considerably, but is not robust enough to prevail over perception.

The students’ confusion in this case appeared to result from a shift of attention from
one feature (the y-intercept) to another (the vertex). Not only is the vertex & more salient
feature, but in real-world everyday strategies for judging heigh, it is the feature we would
be most likely to use. (More will be said about real-world strategies later.) In other cases,
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confusion scems to arise from the same mechanisms that give rise to familiar perceptuul
illusions. Consider, for example, what happens when the students take the cxpression they
have just developed and begin to chaige the coefficient of x to “move it over.” Figure 4
shows how the graphs appear when they have all but the constant term correct. When they
looked at graphs like this, they knew that they needed to adjust the constant, but it also
208 §ppeared to them that the

’ inner parabola was more
obtuse than the outer. Here,
the target parabola (dashes)
appears blunter than the trial
parabola above it

As was tue of the confu-
-, sion regarding the meaning

\ of “height,” illusions such
k as the one illustrated here
were sometimes powerful
enough to draw their auen-
tion back to the already cor-
rect coefficient of the x2
term and cause them to
change it.

'

]

1 \

-xflll

Pigure 4 -2x%+30x + 4

A GENERALIZED THECRY OF ILLUSIQONS

The Cartesian graph spaces with wiich we are confronted in books and on computer
screens are rectangular segments of a plane on which some shape appears. Most
commonly-—always in the case of algebraic functions that are defined over the entire
domain of real numbers-—only a portion of the shape appears. Through our expericuces
with partial views of real objects (c.g., views of things being shifted up or down as viewed
through a window) we develop working strategies for interpreting such views. It makes
sense that as we first learn to read graphs, we interpret what we see in them according to
those strategics that have been successful for us in other realms, and we continue to use
such strategics until our new experiences teach us to do otherwise.

In fact, when the object being viewed is infinite in size and relatively poor in discrete
identifiable features, our everyday strategies fail: what we experience is often a perceptual
or attentional illusion. The student work described above gives examples of both.

Imagine a person slowly descending on a scaffold outside your office window. As the
person’s feet first appear at the top of your window, you already have a very good idea of
the overall shape of the person. Assuming a constant rate of descent, you have a good idea
when that person will be fully visible. Aided in part by the availability of readily
identifiable, discrete elements in the scene (c.g., shoelaces, buttons), you have no difficulty
at all knowing which direction (down) the person is moving. Finally, because people are
not too variable in size (among other clues) you can tell that you are seeing a 6 foot person
descending immediately outside your window and not a 240 foot person 40 fect away.

By contrast, overall shape, magnitude of a translation (corresponding to the rate of
descent of the person in the window), direction of movement, and scale (corresponding to
the distance of the person viewed in the window) may all become ambiguous when the
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object viewed is infinite in size and has the kinds of regularities of shape and lack of readily
recognizable sub-clements inkerent in liues and parabolas.

TOWARD THE DEVELOPMENT OF A TAXONOMY OF ILLUSIONS

We are currently beginning to classify the sources of confusions that arise in the perception
and interpretation of graphs. This paper will illustrate only two: orientation of the graph
within its window, and interaction between scale and function.

Consider, for example, what one secs when looking at a family of lincar functions
Ax+B that differ only in the value of the constant B. If we already know the algebra, we
have built up some apaltytic expectations. What we ¢ 7iect to see is that the graph of a line
moves up as B is glcrmscd. as in figure 5.

2

FigawEe 2 TTEx T 1 Figam o 2T TEx v 1

Because an infinite line presents us with no discrete Foints to watch, however, it may
also appear to be moving from left to right as the constant term increases (figures 6a, 6b) or
even from right to left if the line slope is positive. The way the line appears 10 move
depends totally on the angle it makes with the window through which you view it. Though
the appearance is a perceptual phenomenon—not one that any amount of algebraic
sophistication can change—algebraic sophistication can lead us to ignore appearunces. We
may even be able to “sce” that the segment of line visible in figure 6a has “moved off the
top of figurc 6b™ and a new scgment, previously unseen, is now visible.

2

Femeen 2 <ix - 2 Fleaees 4 -2x + 2

A student who is learning the algebra for the first ime, however, has no such analytic
expectations. This has important implications for the use of inductive leamning expericnces
with graphing softwarc. Exploration with such software may certainly lead students to
“correct” conclusions, but it may also lead to very complex rules like:

O
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There are five cases that describe how the graph of atincar function
Ax+B changes a5 B incre=ses,

Al the: line moves up as B increases

IAl>> 1, A>0 the line moves w the keft

IAl>>1, A<O the line moves (o the right

Alwl, A<O the line moves diagonally to the northeast
lAlm 1, A>0 the line moves diagonally to th nortywest

This may be an interesting piace for students to be at some stage in their mathematical
leaming, but is certainly not where we want them to arrive as a final destination, Worse
yet, stuckent propensity to choose integer values rather than decimals—therefore missing the
cases where IAl < I—makes it highly likely that students will choose initial examples that
lead them 1 the lefi-right theory without even secing the up-down or diagonal movements
that might lead some 1o expect or want a simplificagion.

2 Finally, there is an sdded complication. Even

the complex rule given abave assurmes that x and

\ y ure symmetric on the graph. The (visual)

angle that a line makes with its “window"

\ depends both on the line’s (mathematical) slope

g and on the relationship of the scales of the two

axes. In figures § und 6, the xand y axes are

represented in the same scale.  Figure 7

represents the same function that appears in

figure 5b but, because the scale has been

changed, its graph resetables the family of
functions represented in figure 6,

Fwe? — "2 TEr vl

Scule affects perception in other ways as well. An infinite line viewed close up (figure
84) or from afar (figure 8b) appears not to change shape, though it moves “closer” to the
center of the window. This accords perfectly with our everyday experience with normal
objects: as we veiw an (ordinary) object from the same direction but at varying distances,
angles in the object are preserved but distances (in this case, the distance from the center of
the window) are not. (Of course, the line in figure 8b may equally well be perceived as
“higher,” suggcsﬁ;g that there has been a change in the ccinstam term.,) .

]

-2 \ 2 -2
N
AN

FigureBa -2 -x=-1i Figure 8% -20 ~x-1

We have a very different expericnce with the parabola. Figure 9 shows a closcup view.
The small box in figure 10 is a reduction of figure 9, one-tenth its lincar dimensions, The
extended view of that parabola is how it would appear on a scale symmetric in x and y and
running from -20 to +20. Unlike a straight line, the parabola does appear to change shape,
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Although the portion of the plane that we see in figure 9 corresponds to a fraction of that
shown in all of figure 10, we automatically compare the tiny chunk in figure 9 with ali of
figure 10, not just the segment in the box, fooling our eyes into thinkir:g that angle has not
been preserved.

If we compare cquivalent portions, we avoid the illusion. The boxed area of figure 10
alone does not appear to be a different shape from that shown in figure 9. Thus, when the
scale of the parabola changes in a window of fixed size, the parabola appears to change
shape Yet, when the scale of the window changes along with the scale of the object in
it—that is, when we se¢ the window as well as the parabola from afar—we have no such

\
\

-2 2 %

Figure 10

2

Figure 9 -2 2 -x -1

Understanding this interaction between scale and “shape” is important because students
typically use “shape” of a parabola (on a constant scale and in a fixed-size window) to
determine the A cocfficient. Thus, though they leam strategics for solving their problem,
the strategies are based on an underlying notion—that parabolas may have different
shapes—that is erroncous. The shape that they see is, in part, an artifact of scale

We are now studying the implications of these illusions. As suggested in the metaphor
of vicwing the window-washer from your office, the unavailability of easily trackable
points—like ankles and shoclaces—causes some of the confusion. Perhaps students need
more experience with discrete functions—or continuous functions such as Alx-B+C which
have “special” points—as a background for continuous ones. Another problem appears to
be due to the infinite range and domain of the functions. What are the implications in this
case? The interaction between scale and function is leading us to invite students to graph
familiar functions on variously distorted graph papers, to help us learn what they consider
the necessary features of a graphing environment, and to help them explore the invariants
of graphs under particular transformatior:s.
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Understanding feedback systems.

Claude Janvier and Maurice Garangon.

This paper attempts to define what is meant by
underetanding feedback systems. Understanding is
envisaged as a form of coordination of three
external representations in view of
characterizing the evolution of the eystem and
predicting the effects of changing one variable.
Difficulties are described on the basis of this
analyeie. A computer program that is meant to
atudy further this underatanding is described
together with the planned experimentations.

Feadback systems are sets of variables interconnected in a spacial
vay and vhose values evolve with time. A simple ecological aystem
vhich involvae a fev populations characterized by wating habits is
an example of such a feedback systam. When the preye happen to grow
in number, the population of predators increases apd this bae a
consequance on the preys themselves. This action of the population
of prays on itself is the main feature of feedback systems and is
called a fewdback laop. For eimilar reasons, the “stock” of an
item with the “number of jtems ordered” at fixed intsrval of time
are two variablwe which as a system can be regarded as a feedback
system. In fact, a change in the order inducee a change in the
atock which, in turn, ae a feedback effeot, brings about an
adjustment of the next order. The variablas of a fmedback system
and their relations are basically represented by a causal diagram
such as the onse ve have used to illuatre the tvo examples provided

so far. _
M =0

“
C figure 1: S figure 2:
acological system system formed by a stock and
conaisting of a population the reqular order of the items

of cats and one of mice.

As the diagrame show ( namely the "+" sign tovards the end of the
arrow), an inoreass in the amount of mioe will inducs an inorease
in the population of cats, while an inorease in the amcunt of cats
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{predator) will bring about a reduotion in ths population of mice
{sea tha “-" aign). Similarly, a changa in the atock of an item
will involve the order to adjuct and aonsequently will bring about
a change in the stock itself.

Modeling and interpretation

Onm can envisage any faedback eystem as a est of mathematically
defined relations betwsen the variables. They can gensrally be
oxpressed as a met of differential or difference equaticns which
determine a wodel. Such a model dstermines a class of
poseible interactigns betwesn the vartiables. Mathematically
epsaking, we can say that there remain sows parameters that ars
left to be fixed and which will define a particular inetanae of
the wmodel. For instancs, particular values given to ths
populations’ size at time tg will define a particularized model. In

other worde, a model in which the parametere have been determined
defines a precies system. Hovever, a particularized model will
naver bahave like a real vorld eystsm since it is impossibls to
take into account all the factors determining the svolution of such
a wsystem. A first step into the umderstamding of faadback
eystems involves showing mastery of the procese of
madeling which requires manipulating the abstraot concspts of the
model while keeping in mind the muaning of the rslation provided by
the oontsxt. This is a form of abstraotion quite oowparable to the
ona characterizing the process of intsrpretation of cartesian
graphs ae described in Janvier(1980).

Along this line of thought, it must be pointed out that even
though oconorets objscts are scmetimes involved in such systema,
they remain basically abetract in the esnss that the individuala
are alvays considered ae parts of a population and, aes a
consequence, the relationa between the populations are essentially
etatietical in nature. Morsover, the measures that ara uaed are

often very complex such hirth rates, fluctuations of the inflation
rate. ..

-Understanding feedback systems: a first approach.

Even though a set of equations definee totally the relations
betwaen the variablas, thsy are meaningless in praotical terms
because the interactions are more vividly expressed in terme of
the solutiome of these squationa which are sxplioitly represented
by a cartesian graph. We fesl vell-founded to take thn‘ntm'xd that
sstting up the equations of a eystem doss not- necwssarily iovolva
understanding it. In other worde, we belisve that understanding
faedback systems goss far beyond sstablishing the relations on the
causal diagram.

Apart ~from the difficulties relatad to the process of
modeling, it then follows that understanding fesdback systeme
involves ueing efficiently the different represuntations
of particularized madels in order to supply
characterizations of the evolution of the eyetesm.

In faot, ae it has just bheen mentionad, a particularized

aystem is more adequately deecribed by a set of curves showing
the evolution of sach variables on the same cartesian graph whioh

Q
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ve call a malti-ourve diagram (sme figqure 3). On the other hand,
the ralatione illustrated by the causal diagram is in no vay
contained in a multi-curve diagram. As it ie shown in Janvier{1978)
and Presce(1983), the relations batwaen variables of gcological
eyateme illustrated only by ocartesian graph are difficult to
interpret. A first attempt to halp students’ interpretations would
consiet of providing them with an adequate causal diagram ae a eort
of support for their reasoning. We are then led tc define in a
first approximation waderstanding feedback aystemsa as a form of
coordination betvesa the gaveal diagram and the

corresponding (multi-cwrve) oartesian graph in view of
bein

of the system.

f
ﬁ Mice
i
2
-
15 ¢
[
CATS

© gho 1000 509 Time (DAYS)
Ftﬂu.(‘c 3

Some diffioultise.

With this notion of underetanding in mind, wea shall examine the
structure of such systsms in order to determine the difficulties
vhich one meet in dealing effioiently with them.

* The baeic cowponeat is the fesdback loop and wa shall
oxamine its internal complexity.“Didactically speaking“,ons can
distinguieh two irrsducible kinds of feedback loopae.

The firat kind i@ a loop in which one of the slements is introduced
in order to control the lavel of a variable. Such eyetsma are
simple in the sense that the valus of the controlled variable tends
to pre-determinad ohjwotives that are attained through well known
patterns. Examples are the temperature of a room with its
thermoatat, the epsed of a steam machine together a Watt
centrifugal contrnller. The aystem shown if figure 3 is anather
example,

In the second type, two populations interact while they chey some
internal grovth laws. the syetem desoribed by figure 2 would then
be more adequately rapresented by figure 2'(next page) which shews
olearly why the charaoterization of the svolution of the system is
more difficult to achisved.

* Feadback loops involve variables vhose changes induce an
innrease or a decreass in the other variableas. Nov, René de Cotret
(1985), Jao Ponte(1983), Kerslake(1977) and Janvier(1978) have

O
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shown that for a single variable etudents have troubls going heyond
a linear relation, They also zhowed how difficult it im for them to
dissociate a rats of change from the actual value of the variabls
at one instant. For exampls, the tide is said to rise fast when it
is high. René de Cotret appeare to have reduosd this wort of
difficulty with a tesaching method based on meaningfulful
exparinental work. Howaver, feedback loope are more exaoting in the
sanse that they involve two variables and their respective rates of
changs. Unaderstanding feedbaok consequently requiree being
able to coordinate the interaction of tvo variablee and
their rate of ochange within a cgcertain oclase of
inter-actions

+ -
/’\g
(ZcPrundt'oh C S_ _ M+ Reproduction

figure 2’

* Another kind of difficulty an understandimg of {esdback
systems must taks into account ie a new kind of relations
hetwveen variablee due to the fact that fesdback loops describe a
process which is basioally dynamic. More explioitly, the first
phenomena that are introduced to students in their science courses
ars such that cne variable dstermines another one and vice versa.
For sxample, the tsmperature will determine the length of a rod;
the density of a particular liquid, the rate of a osrtain chemioal
reaction... The analytical sacientific method presupposes that
sxpsriments can bs carried out in which we sxamine the effasct of
one variable on another, while the other ones ars being kept fixed.
This is not poseible for fewdbaock loope. No variable can be

_ assumed to be in a way gontrollable nor can they be considered

indepandent. In fesdback eyetsks, there are ne independent
variables (except time possibly!). This fact constitutes a
major obetaole.

Tovarde the introduotion of the phase diagrams.

Since understanding can be regarded as ae a form of ooordination
bhastwesn two forms of external reprasentations, it sesms
pedagogically sound that it would ba developsd through a eimulation
that would facilitate the coordination of reprasentations vhen 2ome
oontrol of the wystam oan be achieved through iater-active
features. Thars exist on the market to-day meveral computer
programs which simulats a particularizsd model dirseotly from the
definition of the relations established with only the halp of the
causal diagram. However, we diemiee the faot that thie kind of
similation can bs beneficial because it does not allow rmal
experimentation with the system. In other worde, whan tha relatione
hetwasn the variables are fixed and the population determined, the
simulation ie carried out and illustratsd by a mlti-curve diagranm,

Q
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and no changes can be made vhen the simulation ie under way. An
expsrimentation is needed that would allov the studente to
madify the gonditioms or the relatiom of the eyetem at any
time and examime the comssquences of such modifications on
the eyetem. Clearly, the coordination between carteeian graphe and
caueal diagrams is not eufficient bacaues the changes induced on
the curvee are complex and very confusing.

As we look for a more refined repreeentation, a mors profound
trouble with the coordination of carteeian graph with the causal
diagram can be eingled cut. The relation euggested by the causal
diagram contradicte what is revealad on the milti-curve one. When
one locke at the behavior of the populaticns (eee figure 3) around
day 800, an increase in the number of the mice takee place at the
eams tims ae® a reduction in the number of cate vhich contradicte
the relation "tie ware preys, the mare predators’. In corder to
remove ambiguity, the relation could bs reformulated the following
way: “an increase in the number of preys will magnify the envieaged
increase nf the population of predaters or will elov down a
raduction of the population of predatore which would be undervay.
Hovever, this makee the resulting causal diagram pretty avkward.

Understanding feedback systems: a more refined approach.

Inepired by several fundamental studiee in the field Schaefer
(1967) and Braunschweig(1985)we think it is neceseary to introduce
in our analysis phasw diagrawms that work well for 2 variables.
It conaista of a curve in a cartesian plane (eee figure 4) vhose
pointe (two co-crdinates) represent reepsctively the wize of two
populations at one time. The evolution of hoth populaticus jie then
rapresented by  thie continuoue curve in the plane. The main
shortcoming of such diagram is that time as e variable is not
represented ae in the carteeian graph. Temporal reference must be
added nov and then according to the needs as ve have done with the
Ty, Tg’ '1‘3‘... A syetem of three variebles would require ueing the

space. The evolution of the syetem would then be a thres-
dimeneional path.

&

6.

30t Ta

CATS

10}r Ta

joy T

Sov MICE Mmice
figure 4: Phaee diagram correeponding figure 5:
to the carteeian diagram of figure 3.

Phase diagrams are very efficient for representing a eeries of
farticularized models because their genuine cyolic evoluticn givee
ries to closed curvee in the phase diagram. Thie is ehown in figure
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S. Needless to say, ve esimplify thinge here since in certain modele
the populations may epiral is or out. In other worde, the
evolution of syetems involving any combination of tvo populatione
would ba modelized (under rather general conditions) by one of the
path whown in figure 5. Changing one populatien during the
evolution of a system would mean going from one curve another one.

Figure 6 ehows what ie ths consequenoe in terss of evolutions to
recluce the nusber of mice.

©) Fhom C2TOC3 §
2

@

(5

Mice

figure 6 fiqurm 7 BigdS

Conseguently, vhen umderstanding faedback oeystems is
ameaciated with saordisatiag efficiently causal,
walti-curve and phaes diagrams, it invalves thea not only
being ahle to supply characterixatiosms of the evolutiom of

a eystem but 3lsg predicting the e n
population of the system at any moment of ite wvelution.

Clearly all the previous difficulties etay the eame. However more
iw required Phase diagrams show clearly the contradiction mentioned
apd reveale a lot about the dynamical setructure of feedback
systams . Figure 7 showe the dramatic conswquencs of killing too many
ineects.Birds disappear and inwects cowe back az force.

Testing understanding.

W plan to conduot thres experiments all related in a epsaial
panner to the notion of understanding of feedback syetums defined
abave. The thres are intimately linked with a computer program that
is nov in production. It coneiets of a game in which the student
play the role af a pisciculturist who exploits a fishing reserve
(pisciculture entrepries), Two kinde of fieh axe involved

predator (blue) and pray (yellov). They are symbolically mixed in
a cectungular “lake” in the center of the scresn. They do not
appest individually but only in a homogenecus mixture. According to
thoic :ztio, the green color of the “lake” mey be more bluieh or
more i \lowish. A column on each side of the rectangle rspresents
anyhow the size of each population permanently. The isciculturist
cau allov fishing and be paid; or he can etack the ake with blue
or yellow fish and pay for it. There is on the scresn a "bank
account” that variss along with the transactions. The winner is the
ona who makes the best performance at controlling the system and
makes mors money with it vhile “"keeping the lake in good shape”.
The program will be ueed in another version in vhich a phase
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diagram appesring in the corner of the ecreen vill exhibit the
state of the eyetem at aach instant.

1.- We will teet the officiency of the two versione. This amounte
to verifying how effeotive i the uee of a phase diagram for
oontralling the eyetem. It may happen that the regular ohange of
the green oolor of the "lake" i sgufficient to detsct the right
etrategy allowing a rational exploitation of the pisciculture
entreprise. In euch a case, va mhall have ehown that ocertain
underetandinge of feedback seyetems do not fit our theoritical
framework.

2.~ We will verify whether tha knovledge darives from playing with
the computer program enriched with the phaee diagram can ba
transfered to more ocompler ayetsms such ae the eardine-seal-
fishermen ecological syetem of the St-Lavrence Gulf. Yn fact,thers
exiets a film desoribing technically the relations hetwsen theee
variables. We wish to check haw the computer program would prepare
the etudent to better interpret the content of tha f£ilm.

.- Preece (1986) bhae oreated intaresting taske involving
scclogical systems that are perturbed and come back to their
equilibrium position. We envieage taetiny the influence of the
computar program on the etudents’ reeponsee to these tasks.
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DIENES REVISITED: MULTIPLE EMBODIMENTS IN COMPUTER
ENVIRONMENTS

Dr. Richard Lesh and Jean Herre
WICAT

ABSTRACT

This paper will describe significant ways that computer-based instruction
can encourage teachers and students to make greater use of activitics with
concrete materials, while at the same time providing a useful context for
implementing some of the best instructional strategies associated with
mathematics laboratories— including some strategies, which before, have
never worked well using concrete materials. ‘There is not enough space in
this paper to present research results concerning the success of the
computer-based activities used to illustrate Dienes' instructional principles;
however, our presentation will focus on these results, pariicularly as they
apply to higher order thinking.

DIENES' MULTIPLE EMBODIMENT PRINCIPLE

Past RN, PR, and AMPS publications (c.g., Lesh, Landau, & Hamilton,
1980; and Behr, Lesh, Post, & Silver, 1984) have identified five distinct
representation systems that occur in mathematics leamning and problem solving.
These are (a) "scripts” in which knowledge is organized around "real world" events
that serve as models for interpreting and solving other kinds of problem situations;
(b) manipulative models (such as Cuisenaire rods, arithmetic blocks, fraction bars,
number lines, etc.) in which the "clements” in the system have little meaning per se,
but the "built-in" relaticnships and operations fit many everyday situations; (c)
pictures which, like manipulative models, can be internalized as "images"; (d)
spoken languages, including specialized sub-languages (e.g., logic, etc.); and (5)
written symbols which, like spoken languages, can involve specialized sentences
and phrases, suchas: (x +3=7,A'UB' =(AN B)") as well as normal English
sentences and phrases.

Aruitoxt provided by Eic:




O

- 212 -

Not only are the translation processes between models in different
representational systems important components of understanding a given idea,
they also comrespond to some of the most important “modeling" processes needed
to use this idea in everyday situations. Essential features of modeling include (1)
simplifying the original situation by ignoring irrelevant characteristics in order to
focus on more relevant factors, (2) establishing a mapping between the original
situation and the “model," (3) investigating the properties of the model in order to
generate predictions about the original situation, (4) translating (or mapping) the
predicticns back into the original situation, and (5) checking to see whether the
translated prediction is useful,

Here is an example where the preceding steps are used to solve a standard
algebra word problem:

Al has an after-school job. He camns $6 per hour if he works 15 hours per
week. If he works more than 15 hours, he gets paid “time and & half* for
overtime. How many hours must Al work to eam $135 during one week?

To solve this problem, students may begin by paraphrasing the given
"English sentence” into their own words, perhaps accompanied by a diagram or
picture of the situation. Next, the description of the problem can be translated into
an “algebraic sentence": (6 x 15) + 9(x - 15) = 135. Then, a series of algebraic
transformations can be used to convert this algebraic model into an arithmetic
sentence that is sufficient with which to find the answer. The final transformed
description is:

X = laﬁ -lgﬁx 151+ 15

Finally, by using a series of arithmetic simplifications, this arithmetic sentence can
be reduced to: x = 20. '

So, beyond the paraphrasing and diagramming, the entire solution process
involves three significant translations: (1) from an English sentence to an algebraic
senterice, (2) from an algebraic sentence to an arithmetic senteace, and (3) from an
arithmetic sentence back into the original problem situation.
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Notice that the algebraic sentence that most naturally describes the
preceding problem situation does not immediately fit an arithmetic computation
procedure. This possibility of "first describing, and then calculating" is one of the
key features that makes algebra different from arithmetic.

As the preceding problem illustrates, problem solving often occurs by (1)
translating from the "given situation” to a mathematical model, (2) translating the
model-based result back into the original problem situation to see if it is useful.
However, the modeling process usually is not this simple. Instead, in modeling
students frequently use several representation systems (or models), in series or in
parallel, with each depicting only a postion of the given problem situation.

We found that for realistic textbook word problems, good problem solvers
are flexible in their usc of various relevant representational systems—they
instinctively switch to the most efficient representation at any given point in the
solutica process.

DIENES' CONSTRUCTIVE PRINCIPLE AND PERCEPTUAL VARIABILITY

Helping students construct a system of mathematical relationships is
similar to helping students coordinatc systems of overt activities like those
involved in playing tennis or riding bicycles; that is, the student begins in
situations in which the complexity of the system and the degree of coordination are
minimal (¢.g., all of the balls come waist high on the forehand side just within
armt's reach) and gradually progresses to situations that require more complex and
well-coordinated systems (c.g., where "getting in position” is important).

In general, building more complex systems involves: (1) integration— €.g..
simple systems are linked together to build more complex systems, as when a tennis
serve is built up by gradually linking together the toss, the hit, the follow-through,
ete.; (2) differentiation—c.g., a single systemn is differentiated to produce two or
more distinct variations, as when a forchand volley is varied slightly to produce top
spin or backspin.

Poorly integrated mathematical systems are similar to poorly coordinated
systems because (1) the student will not “read out" all of the available
information—e.g., when first learning to ride a bicycle or hit tennis balls, a great
deal of relevant information is not noticed; (2) the student “reads in" interpretations
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that are not objectively given—e.g., when first learning to ride a bicycle or hit tennis
balls, the student's description of an activity is often distorted and biased.

Both of these factors also appear when, for example, an "eye witness” to an
accident interprets given information in a way that is biased (because only sclecied
pieces of information are noticed) and distorted (because what "made sense” and
what was “expected” influenced the interpretation of what actually happened).
Similar biased and distorted interpretations also influence students' mathematical
Judgements in graphics-related problems like the: examples in this section.

Next, an example will be given to show how the basic approsch of "taking
apart” and "reassembling" mathematical ideas can be extended to basic algebraic
concepts. We will focus on "unpacking" the systems of operations, relations, and
transformations that underly the basic concepts of linear equations and simple
polynomials.

The activities that follow are based on a symbol-manipulator/function-
plotter called SAM that WICAT developed to enable students to write, graph,
transfoem, and solve algebraic expressions and equations. In lessons, SAM helps
students learn some of the most important basic ideas in algebiu or calculus, and
the algebra ideas can make SAM more useful for problem-solving situations that
students want to address. However, SAM is more than a calculator; it has the
following characteristics:

1. SAM can serve as an expression checker. We don't have to wait untill
students give final answers to know whether they are proceeding along
correct solution paths. We can, for example, assess whether they "set up”
the equations cormrectly.

2. SAM is LISP-based, 5o it not only generates answers, it can produce
solution path “traces” that create many instructional capabilities. For
example, it ailows us to: (a) generate hints by gradually revealing
solution steps one at a time, (b) monitor individual steps in students’
solution paths, (c) let siudents examine processes as well as products
of solution attempts, and (d) give students the capability to build/edit/
store equation-solving routines (like the quadratic formula) in a LOGO-
like fashion.
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SAM's symbo) manipulation capabilities interact with its function piotter
to produce graphic interpretations of transformnations leading to solutions.
‘This gives students ways to visualize symbol transformations, and (in yet
another way) to focus on processes as well as "answers” during solution
attempts.

SAM can reduce answer-giving phases of problem solving so that
attention can be focused on “nonanswer-giving" phases (¢.g.,

probiem formulation, trial solution evaluation, the quantification of
qualitative information, the examination of altemnative possibilities, etc.)
where "second order” (i.e., thinking about thinking) monitoring and
assessing functions often are especially important. Se, SAM is not
simply an answer-giver; it can help students to go beyond rhinking

to think about thinking.

For polynomials, it is casy for students to use SAM to carry out the

following kinds of investigations:

1.

O
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Pick a value for n, between -10 and 10, and investigate the changes that
this value produces in the graph of the linear cxpression: ax.

Plot the graph of the squared term, x2; then plot the graph of the linear
term, nx (as in step 1 above); and finally, plot the graph of the polyne-
mial, x2 + nx. Notice that the polynomial crosses the x-axis at the points
zero und -n.

For example, Figure 1 shows the graph of x2 and 4x. Figure 2 shows
the graph of the polynomial x2 + 4x.
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After repeating step 2 for a series of different values for n, it is easy for students
to notice: that the effect of adding x2 and ax is to "slide the graph of x2 downhill
along the line nx.”" Furthermore, it is casy for studeqts to notice that the amount
of the slide is just enough to make the polynomial's graph pass through the
points zero and -».

. Polynomials from step 2 can be factored into the form x(x + b), and each

of the limrfacmeanhegnplwdumowninl‘igum 3. Then notice
nutdwmﬁmpusdmghﬂwzxﬁntsmmmd-n.
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Figure 3

Step 3 shows why we can solve polynomials by factoring, setting cach of
the linear factors equal to zero, and then solving these lincar equations,
mlincumamequaltomoatexacuymemplmas the original
polynomial,

In this example, the two models involved are (a) written symbols which (although
they are on a computer screen) are like those mathematics teachers write on

blackboards, and (b) computer graphics, consisting of graphs of equations in a

rectangular coordinate system. Nonetheless, the computer-based activities using
direct applications of Dienes’ instructional principies can be created. For example:

~—The constructive principle is involved when we "take apart and then reassemble”

complex mathematical systems related to polynomials,

~—The muliiple embodiment principle is involved when we focus on mappings

between two given models (i.c., written symbols and graphs of equations),
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—The dynamic principle can be used to show how transformations performed on
algebraic equations are reflected in changes in the graphs of the equations at each
step. For example, in the next section, we will show how a slight variation on
the preceding sequence of activities can be used to show why the "completing the
square” process works in the derivation of the quadratic equation.

Even though the "materials" used in the example are computer-based
graphics rather than "concrete materials” in the usual sense of this wozd, the
activities can indeed involve overt actions that students can apply to "objects” that
they can see and manipulate; and for the first time Dienes' instructional principles
can be applied to content arcas like "polynomials" which did not seem to lend
themselves to & "mathematics laboratory" form of instruction.

DIENES' DYNAMIC PRINCIPLE

Models like coordinate graphs or systems of linear equations can be considered
“conceptual amplifiers" because when they are used, they help students use their
ideas more effectively. They are not simply inert systems that have no meanings;
once students learn to meaningfully embed mathematical systems (ideas and
principles) or problem situations within them, students are able to "read out”
additional meanings.

A dynamic representation system, once constructed, actually helps students
to generate significant new questions and to generate soplisticated solutions related
to two of the most fundamental ideas in algebra; that is, our students have used
informal language to describe rather deep principles related to (1) invariance under
mappings among isomorphic systems, and (2) invariance under transformations
within & given system.

The following example illustrates how computer environments -are well-
suited to Dienes' dynamic principle. Whether we are dealing with linear equations
and graphs, fraction diagrams and simple proportional reasoning questions, or
with polynomials, cornputers make it easy for the student to manipulate one model
and immediately see corresponding transformations in one or more other models.

Q. 247

RIC

Aruitoxt provided by Eic:




- 218 -

This example has to do with the process of "completing the square,” which
can be used (prior to using the quadratic formula) to find the roots or factors of
quadratic equations like x2 + 2x - 3 =0. Figure 4 shows the graph of x2 + 2x- 3 =
yandy = 0. Figure 5 shows the graph of x2 + 2r =y and y = 3. Then, Figure 6
shows the graph of 22 + 2x +1 =yand y = 4. Notice that the tip of the parabola
just touches the x-axis. (Is this significant? Would it happen for other quadratic
cquations? Which kinds?) Figure 7 shows the graphs of x + 1 = yandy=12,
Notice that the diagonal line goes through the x-axis at the same point where the
parabola had touched. (Is this significant?) Figure 8 moves the graphs in Figure 7
so that the diagonal line goes through the crigin of the graph. (Is this significant?)
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CONCLUSIONS

In general, we are in sympathy with those LEGO BEFORE LOGO
proponents who believe that children's mathematical abstractions should be built of a
firm foundation of cxperiences with real manipulable models and realistic problem-
solving situations. However, we also know that even real concrete objects often are
used only in very abstract ways and that very few teachers successfully use concrete
activities as a significant instructional tool. On the other hand, we have seen that
when students use the kind of computer-based activities described in this paper
(many of which are electronic versions of the kinds of concrete models that we really
hope students will have the opportunity to explore), their teachers actually become
more likely to use "mathematics laboratory” activities with real concrete materials.
This increased use of real concrete activitics scems to occur because computer-based
simulations of mathematics laboratories tend to minimize the reason why teachers
rarely use concrete mathematics laboratory principles.
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USING MICROCOMPUTER-ASSISTED PROBLEM SOLVING TO
EXPLORE THE CONCEPT OF LITERAL SYMBOLS-
A FOLLOW-UP STUDY
Gary T. Nelson
Kennesaw Ccllege

This paper reports on a follow-up to a 1985 study
which used computer-oriented problem solving as a
vehicle for investigating the development of the
concept of literal symbol. The objectives of this
study were: i) to determine ways in which the sub-
jects currently perceive and use literal symbols;
ii) to investigate the subjects' concept of literal
symbol in light of instructional intervention over
the past two years; iii) to determine whether
computer-oriented problem solving can have long-
term effect on the concept of literal symbols.

In 1985, the author conducted a study using the microcompu-
ter as a tool in investigating concept development (Nelson,
1985; 1986). The study's purpose was to investigate ways
that computer-oriented problem-solving activities influenced
the learn.ng of the concept of literal symbols and their use
in certain noncomputer contexts. A secondary purpose was to

investigate the subjects' perceptions of literal symbols in
LOGO procedures.

The four subjects were average-ability fourth-grade students
with no previous experience in the use of LOGO. They were
taught to use LOGO to solve problems involving number sen-
tences, rectangles, and recursion. The following sample pro-
cedures, taken from the subjects' work disks, illustrate
such uses.
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1. TO DT 2. TO FRED
IF 12 = 9 + :BOX [PR :BOX STOP] FD 20
MAKE "BOX :BOX + 1 LT 90
DT FD :X
END LT 90
FD 20
LT 90
3. TO DT. FD X
PR :C END

IF :C = 1 {STOP)
MAKE "“C :C - 1
DT.

END

The first procedure uses a recursive technique to solve the
sentence 12 = 5 + X, The second one draws a rectancle whose
width is assigned by the user. The third procedure generates

a sequence of numbers from C to 1, where the value of G is
assianed by the user.

Each subject was interviewed before and after the instruct-
ional and problem-solving sessions. There were six sets of
tasks in the initial interview. Task set 1, which included
items such as 8 + 7 = 19, was used to investigate the con-
cept of equivalence. Task sets 2 and 3, which included items
such as [] + 9 =16 and x + 8 = 19, respectively, were used
to examine the subjects' perceptions of non-literal and lit-
eral symbols in number sentences. Items in sets 4, 5, and 6,
which all related to rectangles, were designed to explore
the subjects' knowledge of rectangles and area. The tasks in
the tfinal interview included six sets of tasks similar to
those used in the initial interview, as well as tasks which
required the use of LOGO.

During the winter of 1987, the author conducted individual

interviews with three of the subjects, Alex, Josh, and Dick.
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Beth could not be interviewed since she had moved the previ-
ous year. Each child was presented with tasks similar to
those given during the final interview in 1985. The inter-
views were videotaped and transcribed for use as data. The
objectives of the study were:

1) to determine ways in which the subjects currently
perceive and use literal symbols as compared to
1985;

2) to investigate the subjects' concept of literal
symbols in light of instructional intervention
over the past two years;

3) to determine whether computer-oriented problem
solving can have long-term effect on the concept
of literal symbols.

THE SUBJECTS

alex

When presented with the task 14 + x = 20, Alex indicated
that the X was "like a box" and represented a number. He
also stated that replacing x with a different letter did not
affect the missing value. His percepticn and use of literal
symbols in equations were consistent with his behaviors
during the final interview in 1985.

Alex could compute the area of a rectangle when given the
length and width and was able to write an expression for the
arca when one dimension was missing. Given a 7 by X rec-
tangle, Alex indicated that the area was 7 times X. He knew
that the area could be computed only when X was given a
value. During the final interv:ew in 1985, Alex could write
expressions for area, but he always tried to estimate a

value for any missing dimension.
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He remembered the LOGO commands FORWARD, LEFT, and RIGHT.
Alex also remembered that, in the statement FD :D, the let-
ter D represented a missing number. However, he had forgot-
ten how to use the MAKE command to assign a value to D.

Alex was alsc shown procedures which found a missing number,
or generated sequences of numbers. He was aware that the lit-
eral symbols represented numbers, that a symbol could repre-
sent any of a set of numbers, and that changing the letter
did not affect the output.

Alex had not worked with LOGO since the 1985 study, yet he
recalled all of the basic LOGO commands and could interpret
some procedures. Through discussions with the interviewer,
he demonstrated the ability to analyze procedures which used
literal symbols to count or solve simple equations.

Rick

In 1985, Dick initially attempted to solve sentences such as
X + 9 = 24 by using a one-to-one correspondence between the
positive integers and the letters of the alphabet. During
the final interview, he correctly solved all equations,
indicating that the letters represented a number and that
changing the letter did not affect the value. In the follow-
up study, Dick's concept of literal symbols appeared un-
changed since he still solved sentences correctly and indi-
cated the same understanding of the symbols and their use in
the context of equations.

Dick could also write expressions for area using letters, al-
though he attempted to estimate the length when given a 4 by
o rectangle. He soon corrected himself, stating that the ex-
pression "4 times p" represented the area and that the g
stood for a missing number.

Dick recognized the LOGO commands FORWARD, LEFT, and RIGHT;
he stated that "RT 90" told the TURTLE to turn right 90 de-
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grees. He remembered that letters in LOGO procedures repre-
sented numbers in memory, but he was unable to use MAKE to
assign values. When prompted by the researcher, Dick could
analyze LOGO procedures involving recursion or solutions of
equations. He could discuss the role of literal symbols, but
did not recall the LOGO commands. This is not surprising,

since Dick had not written or used any LOGO procedures in
two years.

Josh

At the end of the 1985 study, Josh was able to solve equa-
tions correctly, even though he had initially used an alpha-
betic correspondence to find missing numbers. He was aware
that literal symbols could be "anything you want" and that

using different letters did not change an answer.

Given the sentence 14 + x = 20, Josh found the answer by sub-
tracting 14 from 20. He still knew that the letter was used
“"to put something in." It appeared that his concept of liter-
al symbols in this context had not changed.

During the discussion of a 4 by n rectangle, Josh wrote

"4 x n" for the area, stating that the n stood for the
width. He then stated that, instead of representing any num-
ber, n was the number "that would fit for the length." Josh
could interpret and discuss the use of literal symbols in
counting procedures and in procedures that solved equa-
tions, although he did not recall all of the LOGO commands.

Josh, like the others, had not been exposed to any LOGO
since the 1985 study.

INSTRUCTIONAL INTERVENTION

The researcher interviewed teachers and examined textbooks
to determine the role of instructional intervention in the

subjects' perceptions of literal symbols. All subjects
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attended the same elementary school during the fifth grade,
where they were each placed in average-ability groups. They
used the text Heath Mathematics-Level § (1979), which did
not address literal symbols,

Alex and Dick went to different middle schools, where they
were again placed in average-ability groups. The adopted
text for the sixth grade is Growth in Mathematics, (1978).
According to Dick's teacher, letters will be covered at the
end of this school year, as an enrichment activity. Alex's
class had studied equations in the two weeks immediately
prior to this study. The teacher explained that the letters
represented "missing numbers," and taught the students to
solve simple equations, such as y + 35 = 45 and

2p + 49 = 63. She recalled that Alex, as well as most of the
class, scored well on the unit quiz.

Josh is currently attending a private middle school which
uses the text Arithmetic 6 (Howe, 1981). The unit on equa-
tions will be covered in a few weeks; consequently, Josh had
not received instruction on literal symbols before the
follow-up study.

RESULTS AND CONCLUSIONS

Although none of the subjects had used LOGO since the 1985
study, they were all able to recall and use the basic com-
mands, such as FORWARD, LEFT, and RIGHT. They were also able
to interpret literal symbols in LOGO procedures. This sug-
gests that the manipulative nature of LOGO, which allows one
to model literal symbols in a semi-concrete manner, contri-
butes to the remembering of both the language and its rela-
tionships to literal symbols.

All subjects behaved similarly when responding to tasks

which involved literal symbols in equations. This is signifi-
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cant since Alex, who had received instruction in this topic
only a week earlier, did not appear to use literal symbols
any difterently than the other two subjects. Furthermore,
all three were able to use literal symbols to represent

nmissing dimensions of rectangles when writing expressions
for area.

Based on the above facts, it is the conclusion of the author
that, at least for the three subjects and in the given con-
texts, microcomputer-oriented problem solving has a long-
term effect on the concept of literal symbols. The results
suggest that the computer can be a powerful tool in the de-
velopment of mathematical concepts and that it can provide

concrete models of literal symbols.
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ACQUISITION D'UN LANGAGE GRAPHIQUE DE CODAGE PAR LA
MODELISATION EN TEMPS REEL DES DONNEES D'EXPERIENCES.

PIERRE NONNON
UNIVERSITE DE MONTREAL

Selon Piaget (1979),"1a Haison fondamentale constitutive de toute connaissance
n'ast pas une simple assoclation antre objets car cette notion néglige de fak ractivité dua
aux sujets , mais bien Fassimiation des cbjets & des shdmes da ce sujet”. L'acquiskion des
représentatione ast vue icl commae étamt associée au développemant intallectus, elle
permet A P'élave, par la manipulation et 'expérimartation directe de son environnement,
de se construire un systémae de représentations initiales. Cette construction, laissée aux
aléas de la vie ou & limaginaie sera la basa de représentations plus cuktureties, plus
scientiliques. Le passage entre ces deux types de représantations initiales et
scientifiques, n'est pas aisé; c'est fobstacie dpistémologique (Bachelard 1967) qui serait
franchi par 'assimilation ou le remplacement des vieilles représentations par des
reprdsentations plus sclentifiques.

Selon Palvio (1979} nous utiliscrions deux systémes symboliques de codage de
linformation un systdme de représentatiun verbale qul procede de manidre abstraite et un
systéma de reprdsentation imagée qui procéde 3 partir d'expériences concrétes. Si la
fonction algébrique du premier degré A cause da son caractdre abstrait peut 8tre associde
au premier systéme de codage, !a représentation graphique de cette méme fonction, A
cause de son caractére figuratit, pourralt dtre associée au second systéme de codage si
fon est capable da psnmettre son appréhenslon A partik d'expériernces concrétes et non
plus a partir dune représentation aigébriqua abstraite. Nous devrions alors parlir de la
manipulation et de 'expérimentation concrates dans le but de permettra une construction
progressive de ia raprdsantation graphique (cadage visuel), avant de nous servir de cette
représentation, élaborée au contact de 1a réalité, comme support pour comprendre et
assimiler linteraction entre variables en physique.




Q

ERIC

Aruitoxt provided by Eic:

-~ 229 -

OBJECTIFS

Les aloves dinitiation aux sclences ont de la difficulté A se représenter lintaraction
entre variables de manidre économique et eificace. La représentation graphique de cette
interaction est certainemant foutil le plus adéquat pour prendre en compte l'ensemble da
cas Interactions a la condition que celui-ci sok maitrisé et signiicatid pour réldva, Or il
semblerait que mdme lorsque cet oulil est maitrisé en mathdmatique, i ne devient pas
automatiquement disponible & 'élave pour résoudre daes problomes de physique . Les
&ldvas en mathémalique sani capables de déduire une valeur de y en fonction de x, A
pantir du graghique ou de la tonction algébrique. lis peuvert mdme 8ire capables de
déterminer una fonction aigédrique du premier dagré a partir de ce graphique en isolant
deux points sur celui-cl. Par contre,irds pau sont capables de (utilieer etficacement en
dehors des mathématiques pour par exemphe prédice ou expiciter une intaraction entre
variablas.

En physique ia connection entre le phénoméne et sa reprasentation graphiqua
n'est pas milleura puisquiil s'attactue & postarior], lorsque lexpérimentation ast tarminde.
La représentation graphique sen alors 2 synihétiser las résulats expérimantaux en allant
du tableau des mesures au graphique, et I'dlave pour comprendre et se représenter
vintaraction des variables doit reconstituar mentalement le phénomane physique en
méme temps qu'll vériie son éyokution sur la graphique. Gette tagon de faira apprandie
Vintéraction des variabies avec un graphique ol Paction et 1a représentation sont
temporallament Séparées est difticile A appréhender pour 'éléve. Nous voulons lci
proposer una méthode & caractare technologlque qui permettrak de orésenter {'action et
la représentation de celle-ci en simultanéité. Pour dvaluar la bénélice da cette méthade,
nous alione 1a tester avec 0es 6ldves n'ayant pas encore Aludié aigdbre et la fonction du
premiar degré.

Cette représentation graphique initiale serail alors préalable A I'élude de la fonction
algébrique du premier degré et devrait permellre a I'éléve de mieux assimiler cette
représentation au phénomane physique qu'il éludia. Nous sommes concients que cetle
pédagogle de la rapréscitation graphique, acquise au seul contact de la réakté, semble
utopique sans le support aigébrique traditionneliement utilisé. | n'existe pas a notre
connaissanca de racherche Qui permettrait dappuyer empiriquement cette idéa, aussi
allons nous construire un systdme d'apprenticsage de la représentation graphique
ariginale pour permattre a Fétudiant dracquérir celle-ci au contact direct et sensible de la
r6aiité, par la modélisation en temps réol de données d'expériances en laboratoire.
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Ensuite, novss mattrens e prototype de ce systén.s d'apprentissagae & 'essai avec
la doubla obje stit:

1) d'lde ntiibar les binéiices polentiais de cetts idée A partir das interprétations des
dlaves en situa b d'apprantissape

2) de wuiiller si cotte acquisition de la représentation graphique au contact de la
réalité parmet {, 'élove de prédirs & partic de ce graphkjue les intéractions entre les
variables, vitesse, distarce ot temps en cindmatique.

Pour conchira nous présenterons quelques pistes de recherche sous forme
d iiypothdse afin de valer ceite kide.

METHODOLOGIE

Cetta recharche comporte une grande part de ddvekppemant, la modélisation an
temgs réa! dos donndes d'experiences étant efiactuée par un ordinateur qui travaillera
simultanément an mude conversationnal, en contrdle de procédé ot en moda graphique.
hous avons donc e'fectud ce développement, cancrétisé par un prototype permettant
aux éidves da provoguer of conceptualiser das imeractions de variables en cinématique
pur k2 manipuiation nt le contrdle via un micra-ordinateur d'un train électrique jouet. Ces
éloves peuvert alars planifier des axpériences, en commandar l'exécuticn et
simultanément au déplacement du train , visualiser la représeniation graphique de ce
déplacement en fonction du temps. (volr NONNON, 1986).

La source des données

Les donnédes de cette expérience provionnait de deux sources diftérentes, un
ensamble traditionnel de tests compranan un test de prérequis, un prétest et un postest,
(un exemple de question est donné en appendice) et une analyse du cheminement de
l'éléve etfectudo & partiv de ses diverses manipulations que nous avons consarvées dans
un fichier.

Caractéristiquas des sujels

Les sujels de celte expérience sont des éldves de8 5Kkme et 6léme années du
primaire . Le prélest a été administré en classae sur quaranie-trols dtudians.

De ces étudiants, 14 furent sélactionnés pour I'expérimentation selon trois
critéres: 1) une note au moins égale & la moyenne au test de connaissances préalablas
(nolions de temps, de longueur, de mesure constante, 2) une note égaie ou inférieure A la

moyenne au prétest, 3) une disponibilité pour se rendre 3 fois de suite au laboratoke A
'Universita.




Shéme expérimental

Chaque ¢léve recevait la consigne st une démonstration sur fopération du
systéme expérimental par un éidve expert. I manipulait ensuite durant 20 minutes par
séance et réalisak 3 séances A raison d'une par jour, au Jidma jour, il Slait soumis au
post-test pour les 6 premiars éldves, la manipulation était laissée a leur fantaisie alors que
pour ias 8 demiars, nous leur demandions avant la 2me séance da faire des prédictions
sur les mouvements successits du train.

LES RESULTATS

Les différences entre le prétest et lo postest pour les six pramiers éldves n'a
montré aucune amélioration passant de 36.4 4 39.4 %. En analysant le cheminement de
chaque éldve, nous avons compid les manipulations (efficaces) qui impliquaient un
nouveau couple de paramétra non encore expériments. Nous savons qu'i axiste avec les
paramélres vilesse, distance et temps . Trols couples possibles (distance en fonction du
temps, vitesse en fonction de la distance et vitlesse en fonction du temps). Ce qui
comespond A une séquence de & manipulations simples pour définir entidrement
Finteraction de ces trols variables. .L'indice qua nous avons ulilisé sera donc de nombre (6)
de manipulations optimums divisé par le mombre de manipulations totales effectuées par
'éldve.

Si nous effectuons une corrélation enire las résultats obtenus par chaque ékve a
cet indice d'efficacité et sa perforrnance telle que masurée par les différances post-test
-pré-test, nous obtenons une comrélation de + 0.814 (1=2.803, died, p<0.05).

Pour les premiars sujets, une corrélation significative entre la performance telle que
mesurée au test et findice de cheminement de I'éléve nous parmat d'envisager Futilisation
de cet indice comma critére de perfomance pour léléve.

Pour les huit demiers sujets, le fait de les obliger A pradice le résultat avant méme
de commander feur train semble bénéfique puisque chaque éldve a augmenté sa
moyenne enire le post-test et ie pré-1est, la moyenne géndrale passant dd 45 % au
pré-test A 84 % au post-test.

Ces mises a 'essal empiriques nous ot parmis d'analyser notre prototype et ses
conditions d'utilisation. Avec les huit demiers sujets, nous avons pu vérifler que tous fe3
étudiants avaient amélioré leur performance dane la prédiction ou l'interprétation ¢
interaction entre les trois variables en jeux; les moyennes passant de 45% au prétest &
84% au postest.
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CONCLUSION

Nous avons congu un systéme d'apprentissasge de l'abstraction par
représentation graphique. Ce systdme laboratoire qui présente en simultanéité 'action et
sa représentation permet 4 I'éleve d'acquérir un langage graphique de codage. Ce
langage a composante visuelle, qui constitue une abstraction des interactions de varlables
au laboratoire est acquis au seul contact de 1a réalité, sans support verbal. 1l s'agit beli et
bien d'un fangage, d'un outil cognitif 4 1a disposition J& I'éldve, puisque c'est a travers lui,
par une syntaxe implicite (de la correspondance, de l'interpolation, de I'extrapolation, da la
variation de pente) que '6kdve prédira ou interprétera tous les déplacements de son train
en fonction d'une quelconque combinaison des variables. Nos premiers résultats sont
encourageants, mais nous avons encore beaucoup 2 faire pour comprenxdre et maitriser
ce nouvel outil. Nous allons maintenant, pour tarminer vous présenter sous forme
d'hypothéses un en.sernble de recherches que nous sommes en train de planitier pour en
assurer une validation.

HYPOTHESE 1

La présentation concomitante de I'action et de sa représentation graphique
tavorise Pacquisition d'un langage graphique, disponible pour la résolution de probléemes.

Rationnel:la matrise de ce langaga graphique pourrait se vérifier de différentes
tagons, par exemple en demandant & I'éldve de prédire une interaction non encore
expérimentde. Un résultat po.til indiquerait icl que I'éiéve appréhende le mouvement du
train A 'aide de la fonction graphique, incksant implicitement les concepts d'interpolation et
d'e-*-~~~lation, ces concepts n'étant pas encore formalisés verbalement chez lul. Cet
ap, - »sage de 'abstraction serait ancore plus significatif, la langage graphique aurait
plus de cohérance, si l'on pouvait vérifier I'utilisation spontande par I'éléve de ce langagé
pour appréhender un nouveau champ de connaissances. On constaterait akirs que I'éléve
a bien intégré cet instrument conceptuel et qu'il lui est signiticatit en lui facilitant la
production d'hypothéses, la planification des schames expérimentaux et l'interprétation
des résultats.

HYPOTHESE 2

L'acquisition d'une fonction {graphique) du premier degré, telle que décrite dans
notre modéle d'enseignement, est plus efficace et transtérable que I'apprentissage de la
fonction (algébrique) du premier degré telle qu'enseignée traditionnellement.

Rationnel: mis en présence du phénoméne concret et de son substitul
graphique, tous les deux en évolution conjuguée, I'él8ve devrait acquérir 'habileté &
opérer des transformations réversibles du concret 4 f'abstrait.
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En outre, 'acquisition de cetie fonction graphique du premier degré se faisant
dans un contexte de laboratoire, la transtérabilité de cet outil cognitif dans d'autres
domaines d'application concréte, devrait étre supérieure A ce qu'on retrouve pour la
nation de fonction enseignée dans une legon de mathématiques.

HYPOTHESE 3

Un systémae qui permet de planifier et réaliser daux expériences simultanées est
plus eiticace pour appréhender l'interaction des variables qu'un systdme Qui impose des
expériences de maniare successive.

RATIONNEL.: la difficultd pour I'élave de planifier et d'axécuter un schéme de
contrdle dos variables est fide au caractére séquentiel de la démarche qui exige au moins
deux expériences sucessivas pour décrire unae interaction. La perception directe et
simultande des résultats de ces deux expériences devrait conduire I'éléve a mieux en
appréhendor les diflérences essartielles, que s avait 4 reproduire de mémaire les
conditions et résultats de la premitére expérience pour les comparer A ceux de ia
deuxidma. Les arguments d'sncambrement minimum de la mémoire de travail, d'oubli
dans le temps das condifions et résultats passés,ou de leur oubi par interférence avec
l'activité présente de la mémokie da travai, vont dans la sens da cette hypothase.
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EXEMPLE DE QUESTION

Le train No'1 roule & une vitesse constante pendant 1 heure 25 minutes; il parcourt 123
kilométres.

Le train No:2 roule & une vitesse constante pendant 4 heures 16 minutes; il parcourt 203
khometres.

Quel est le train qui roule le plus vite 7

Distance
en Noi2
kilométres
L
Hesl
100
1 2 3 4
Temps (heures)

Encercle la bonne réponse.

A) Le train No:1 roule & 1a m&me vitesse que le train No:2
B) Le train No:2 roule plus vite que e train No:1

C) Letrain No:1 roule plus vite que le train No:2

D) Le train No:1 roule moins vite que le train No:2
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THE REPRESENTATION OF FUNCTION IN THE ALGEBRAIC PROPOSER

Judah L. Schwartz

Kassachusetts Institute of Taechnology
&

Harvard Graduate School of Education

ABSTRACT

Building algebraic functions of adjectival quantity pre
sents the opportunity to rapresent functions in a variety
of waym, at leaat one of which ia both novel and illumi
nating. The variety of function representationa eaployed
by THE ALGEBRAIC PROPOSER, a software environment for
algebraic modeling and analysia, is presented and dis
cussed.
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If one conatructs algebra:c functions using quantities trat have
explicit refarants in socee extarnal world that one 1s nodeling, then
it 1s poasible to rapresent the functions so genarated in sosma noval
and intaresting waye. This paper will deal with the variaty of
representationa for functiona that sre usad in THE ALGEBRAIC PROPOSER,
& microcoaputér bssed environment for algebreic eodaling and problee
solvang.

Perhaps the easiest way to exhibit the sevaral representations is
to work through @ aseple probles, building and repreaenting functions
as we go. Let us consider the following problea.

Working by hiesaelf, parason 1 can eow the lawn in 2 hr.

Person 1 and person 2, working together, can eow the lawn in
.75 hr.

How long does 1t take person 2, working by hersalf, to aow
the lawn?

The problem refers to sevaral quantities by value and one quantity
by naze. These are (1, lawn}, (2, hr.}, (.7S, hr.) and (t, hr.},
respectiveiy, where wa have used the ayabol t to denote ths eagn:tude
of the unknown tine required for tha two parsone working together to
eow the lawn.

Figurs 1 ia a prosa representation of these quantitiea (antries
A-D) as well as a represantation of four cther quantities (entries
E-H) that are entailaed by the original quantities and thue can be
thought of aa functions of the original quentitias. The reader will
note that in order to aolve tha probleas, ona must conatrain the
quantity H to ba equal to the qusntity D,

NOTES

A the job to be done
Bmmmnnofmmml
nouxng time of person 2
or 1 &2 to mow lamn
wawing rate of person |
nwmgnnof?mmz
combined pate of persons 1 g %

conbined time as function o

::::r:cc.—-.:x:o-:m
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Thia prose representation is, in aome respects, closest to the
waya in which people think about situstions to ba modeled, i.e. in
language. Wwhile it is richly evocative of the quantities involved, it
represents rathar poorly, and in aome instancas, not at all, the
relationships among these quantitias.

Figure 2 shows the prose representation along with a aymbolic
reprasentation of the quantities A through H. This representation is,
aside from its insistence on the inclusion of the referents of the
quentities involved the uaual aymbolic reprasentation of algebra.

HON MAKY RHAT NOTES
Al lawn A the job to e done
. hp B wing tine of parson 1
Ct hr ¢ m)umg tine of ienson 2
D15 hr D time for 1 & 2 to mow lawn
E. lawn/hp A/B |E mowing rate of person 1
F i/t lawn/he 8/C |F wowing rate of person 2 -
G ,at1/t] lawn/hn E+F |G comhined rate os rsons 1 & 2
&Ii /LRIt he f/G ill combined time as function of ¢
J J
X X
; :
N N
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The preservation of the raferents of the quantities in the repre
sentation saskes sslient the fact that the referent of a function need
not ba the sase aa the referanta of either the varjisble or the fixed
quantities froe which it is coaposed.

The ayebolic representation tanda to eaka the referent quantities
leas aslient vhile increusing the asljience of the relationahipe asong
| theae. Further it representa the reletionahips with a degree of
precision thet ie totelly unavailable to the prose representation.

Figure 3 showa both the graphical and the tabular representations
of the quantity H thet THE ALGEBRAIC PROPOSER provides. ¢ 1a 1n no
way remerkasbla and ia praaanted here only for coepletenaess.

0
r

(1/0.3¢[1/411)
B (t( 3 h
0 CUERTICAL ¢ 2 hr

{ ) ordinates )
8 undefined
§ change scale 23 '
t - change step size N 1329
96 649
RETURN 1.2 09
1.4

837
¢ FUNCTION
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Figure 4 shows tha prose representation of the both the original
and the entailed quantities along with & network representstion of the
computational dependenciea asong the quantitiea. Thia compoaite proae
and network representation ia generated by the acftware from the
user‘a prose and syebolic rapresentationa.

PLAN NOTES

A BI§D A the job to be done
B wowing time of person 1
¢ nqumg tine of person 2
tine for | &2 to wov Jawn
£ rowing rate of penson |
F wowing rate of gerson 2
te 0

G coubined ra ersons 1 & 2
H coubined time as function of ¢

T Cat—
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In particular the representation shows the fact that the quanti
ties A, B, C end D are the original quantities, with A, B and D
referred to by value end C referred teo by nasa. It further shows that
the quantity E is computed fros the quantitiee A end B, The quentity G
ia cosputed from the quantities E end F, etc.

Thace are saveral observations to be sede about thias representa
tion. First of ell, it sakes selient the ways in which eech of the
quantitias depend on the others. Although it does not represent the
binary operations isplied by the nodea of the network explicitly, (it
could do so st the price of cosplicating the <isual cosplexity of the
network), thesa may be inferrad, often with little difficulty from the
sessntics of the refersnts in the essociated prose representation.

Second, the network as it satands represents a set of functions.
The reader will notice that the network hes two “lcosec enda”. These
are the quantities H and D. Constraining the network by requiring
that these two Quantities be equsl to one snother forces the network
to have & solution set. This is & genexal property of well-posed
probless in this representation, i.s. that the equetion(s) or
inequality(s) thet sodsl the probles ere forsed by constraining the
loose ends of the prose-network representation.

Third, the prose-network representation containa no reference to
eny of the quantities, either orig:inal or cosputed, by value. Thus
this representation represents the sesentics of tha sodeled situstion
without the confounding offered by the perticulsr values. In thia
aense one msy say that the pross-network representetion representa en
enseable of problems that have the same atructure. Thia is an attrac
tive notion becsuse it sekes posasible s discussion of problem types
end aimilarity of problems beyond the surface feetures normelly used
to clessify probless,
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A STUDY OF THE USE AND UNDERSTANDING OF ALGEBRA RELATED CONCEPTS
WITHIN A LOGO ENVIRONMENT.

Rosamund Sutheriand
University of London Institute of Education

This paper will prasent the preliminary results of a three yeer longitudinal case study
of pupils’ use snd understanding of variable in a Logo programming context. The puplls
(oged 1-14) worked in pairs ot the computer during their “normal” mathematics
jassons. The data consisted predominently of video recordings of the pupils Logo work
and thelr spoken language. One aim of the rescarch was o relete the pupll's
understanding of verisble In Logo to their understending in ‘paper and ‘pencil algetra,
and develop and test out mater lals designed to help pupils make links betwesn these two
conlexts. Analysis of tha data Indicates that most pupiis do not naturally choose to use
vor{sbls in their Logo programming, although with {eacher intervention it is possible to
find motivating problems which provoke puplis fo use varioble. Whether or not pupils
con make the links between veriabla In Logo and veriable in algebra appeor's to depend
mora on the nature and extent of their Logo experience then on any other factor,

vergnaud has pointed out that -algebra Is a detour: Students must glve up
the temptation of caiculating the unknown as quickly as possible, they
must accept operating on symbois without paying attention to the meaning
of these operations In the context referred to” (Vergnaud 1986). He quite
rightly says that we must find problems which provoke the use of algebra.
This 15 not an easy task in‘traditional’ school mathematics. The computer
programming centext however does provide problem situations in which
variable Is a meaningful problem soiving tool. It seems appropriate
therefore to consider the ways in which the computer can enhance the
learning of mathematics, and In particular, as far as this study is
concerned, the learning of algebra. We have been investigating, as part of
the Logo Maths Project (Sutherland, Hoyles 1987) the hypothests that
certain programming experiences In Logo will provide puptls with a
conceptual basis of variable which will enhance their work with ‘paper
and pencil’ aigebra.

Ethr’fographlc research methodology was chosen as being the only one
possible In an area where technology, pedagogy and the approach to
mathematical content were all innovatory. Longitudinal case studies were
undertaken for four pairs of pupils (aged 11-14) programming in Logo
during thelr ‘normal’ mathematics lesson throughout the three years of the
project. As researchers we acted as participant observers in the
classroom. Pairs where chosen to take Into account the spread of
mathematical attalinment and the teachers opintons on constructive
working partnerships. The data included recordings of the puplis’ Logo
work, all the language spoken by the pupils (a video recorder was
connected between the computer and the monitor), the researchers
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Interventions and a record of all other mathematical work undertaken by
the puplls. The video recordings were transcribed and these were
combined with researcher observations and teacher and pupll interviews
to provide the basts for the research.

At the beginning of the research period, pupils were given the freedom to
devise thelr own goals In order to bufld up sel? confidence and autoncmy.
Our alm was to make Interventions related to the idea of variable when
appropriate. Analysis of the transcript data at the end of the first year of
the research Indicated that most pupils did not naturally choose projects
for which variable was a functional problem solving tool. It was decided
therefore to develop teacher devised tasks which provoked the puplls to
use varfable. Throughout the second and third year of the resaarch pupils
were given a range of teacher devised tasks. One particular task, which
used the Idea of changing a fixed procedure to a general procedure hy
scaling distance commands, - provided an important starting potnt.

One aim of the research was to develop materials to help pupils make the
links between variable In Logo and variable In ‘paper and pencil’ algebra. It
was decided to base these materials on the similarity between using
variable to define a function in Logo and using variable to define a function
in algebra (for a fuller discussion of this see Sutherland, 1987). For
example the Logo representation:

FUNC :x Is equivalent to the aigebra representation FUNC(X) = x+4
OUTPUT :x+4 or X X+4
END

The puplls were introduced to these ideas in the form of a game which
invoived one pupil defining a function and the other pupll predicting the
function by trying out a range of inputs. The "guesser” had to define the
same function when she was convinced that her prediction was correct.
The puplis then had to establish that both functions were identical In
structure although the function and variable names used might be different
(puplls were encouraged to use a range of varlable names Including singie
letter names). It has been reported by Wagner(1981) that in algebra puplls
often have the misconception that changing a literal symbol implies
changing what the symbol refers to. in this Logo task we were specifically
building in the experience that this Is not the case.

Categories of variable use were derived from the transcript data and these
provided a framework for analysis. (Sutherland, 1987) An overview of the
puplls’ use of variable analysed according to these categories throughout
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the three years of the project Is presented in Table 1.

Table | OVERVIEW OF GENERAL PROCEDURES WRITTEN BY CASE STUDY

PUPILS.
CATEGORY Puptt 1 Pupit 2 Pupit 3 Pupil 4 Pupil$ Pupii 6 Pupit 7 Pupil 8
OF USE SALLY ASIM  OEOROE JANET JUDE  RAVI  LINDA SHAHIDUR

(1) One Input 4 2 2 4 3 0 3 t

(S) Inputes
Scale Factor 3 3 3 3 3 3 6 7

(N) Mora than
One Input 3 2 2 3 0 0 2 0

(0) Input
Operated on 6 S 5 6 0 0 0 0

(G) Input toGaneral
Superprocedur e
withvarioble 3 3 3 3 2 0 3 0
Subprocedure

(F) Input to
Methematical
Function

N
~N
~nN
F S
~
w
N

(C) tnput used in
Conditional
Expression

o
~
~
(=]
(=]
o
o
o

All the pupils used input to a Logo function (category F) as part of the
Logo/algebra linking materiais presented to the pupils in the eighth term
of the project. Apart from this Ravi and Shahidur's use of variable was
entirely restricted to category 5 (scaling-a distance command). In this
context they realised that the variable used affected the size of the
object on the screen but they were not necessarily aware of the varfable
processes within their procedure. Pupils have been ranked (pupi) | - pupil
8) according to attainment on their school mathematics scheme. Ravi Jude
and Shahidur's more limited use of variable was a consequence of thern a)
being case study pupils for a shorter length of time than the other puplls
b) having a higher absence rate than the other puplls and the teacher being
consequently more reluctant for them to spend time on Logo work. In
choosing to carry out research In a “normal” classroom over a period of
three years we had to accept that for reasons beyond our control the puptls
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were not always avallable for a “planned” session, However the nature of
the transcript data is such that it 1s possible to reconstryct, for all the
case study pupils, the nature of their Logo experience in terms of pupil
collaboratton, teacher Intervention, and computer fnput and output.

In order to probe the case study puplls’ understanding of variabie in both
Logo and algebra they were all given individual structured interviews at
the end of the the three year period of research. They were asked to:

o Make a generalisation and formalise it in an algebra context.

» Make a generalisation and formalfse it in a Logo context.

® Answer algebra questions related to the meaning of letters taken
from the C.SMS! project.

¢ Answer Logo questions related to the meaning of variable names.

¢ Represent a function In both Logo and algebra.

In addition pupils visited the uUniversity laberatories to carry out
individually tasks devised to probe their understanding of variable in Logo.

For the purposes of this paper the pupils’ understanding of variabte in
Logo and algebi-a will be categorised in the following way:

o Acceptance of the '{dea of variable.

¢ Understanding that a variable name represents a range
of numbers.

¢ Understanding that gifferent variable names could represent the
same value.

® Acceptance of "lack of closure® in an expression.

o Abllity to establish a second-order relationship
between variables,

o Abllity to use variable to formalise a generalised method.

Evidence for the puplls understanding of variable nLogo was derived from
the structured interview items, the transcript data and the University day
tasks, while the understanding of variable in algebra was derived from the
structured Interview data only.

Acceptance of the idea of variable was deemed present If the pupils were
wiliing to begin to attempt the structured Interview questions. All the
case study puptls accepted the idea of variable inLogo. None of the pupiis
had had any experience of algebra before using variable in Logo. Throughout
the project the pupils followed their “normal® mathematics curriculum
and the type and amount of algebra work carried out by the pupils was not
in the control of the researchers. However we know that four of the
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pupils, Linda, Jude, Shahidur and Ravl, did not carry out any formal algebra
work during the period of research. Six out of the eight case study pupils
accepted the Idea of varfable in 2igebra. The two pupils, Jude and Ravi,
who did not respond positively to any of the algebra related categories
have both had a very limited experience of variable in Logo (Table 1).

All the pupils accepted the idea that a variable name in Logo represents a
range of numbers. Again all except for Ravi and Jude have carried this
understanding to the algebra context which contrasts with previous
research findings that pupils often regard a letter in algebra as

representing an object or a specific unknown. (Beoth 1984, Kichemann
1681).

2
)
what is the area of this shape? Part of this figure s _>
A not orawn. There are
n sidas altogether

n all of them length 2.

m what s the por-imeterof this shape? p=............

Fig | Fig2

Jude attemptea to use his Logo understanding of variable in the algebra
context when answering a C.SM.S ftem (fig 1) but his Idea of “any number”
soon became confused with ~“anything” as the following example
i1lustrates.

Jude " Does 1 mean any number miss?”
Researcher  "/77s any number and N is any number.”
Jude “So | can just put anything | want.”

Shahidur had some difficulty with the C.SM.S ftem “If John hes J merbles ond
Peter has P marbles what could you write for the number of marbles they have ailogether?”
and his response indicates the transitional nature of his understanding.
writing down 9 as the solution he gave the explanation:

Shahidur ‘Cos John begins withJ and there s four letters in John
and Peter begins with P and there's flve letters in Peter.”

Researcher * Wiy a/d you think P stands for 5 7"

Shahidur “Because | was wondering why they should put J and £.”

Researcher  “WMat If they were called A and R?"

With this suggestion he immediately wrote down Q + R. Shahidur 1s not an
algebra experienced pupil and his mathematical ttainment Is very low.
Under these circumstances his responses to the C3MS questions are quite
extraordinary. When presented with the perimeter guestion (fig 2) he
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wrote down 2 x n's as a solution. When asked to explain his solution he
sald "Cos there's the size of them are 2..and there are n's of them . so -
2times n will be the answer”

In order to test the pupiis’ understanding of whether or not a different
variable name can represent the same value they were given the foilowing
Logo and algebra questionsinet consecutively)(Fig 3).

When is the following true ? When do these Loge commands
draw the sams length Hne?

L+M+N=L+P+N TOLINES "L "M "N P
FD:L FD .M FD N
RT 90
FD :L FD:P FD:N
END
Always. Never. Sometimes,when............... Always. Never. Sometimes,when.....................

Fig3
Only Sally responded positively to both items but four out of the eight
responded pasitively to the Logo item. When we relate these puptis’
understanding to their use of variable In Logo we find that all four have
used more than one input to a procedure and have in this context given
different varlable names the same value. This contrasts with the four
puptls who did not respord positively to the Logo item and who had never
used more than one input to a procedure.

All of the case study puptls accepted lack of closure in a Logo expression
All apart from Jude, Ravi and Linda accepted the idea in algebra. Previous
research Indicates that this 15 often a problem for pupils learning algebra
{(Booth 1984). The case study puplls had used ‘unclosed' Logo expressions
involving variabte In their function machine work.

None of the case study pupils could answer either the C.SMS algebra
question "Waich 1s the lerger 2n or n+2? Expleln..............." OF the Logo related
question correctly. Kuchemann maintains that "An important feature of
these relationships Is that their elements are themselves retationsiips,
S0 they can be called second order' relationships” (Kiichemann 1981). He
maintains that it is only when puptls have grasped this notion that they
have fully understood the idea of variable. Analysis of the data indicates
that none of the puplls had carried out any Logo tasks related to this idea.
Although the C.SMS question ftself can be criticized this result does
suggest that further Logo tasks related to this Id2a need to be devised and
that more adequate test items also need to be develoned.

tvidence from algebra research suggests that puplls often use use
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informal methods which cannot easily be generalised and formalised
However In this project pupils were able to Interact with the computer
and negotiate with their peers so that their intuitive understanding of
pattern and structure was developed to the point where they could make a
generalisation and formalise this generalisaticn in Logo. Ail the case
study pupils could formalise a method generalised by them in Logo.
However the non-algebra experfenced pupils were not able to use algebraic
notatfon to formalise a method generalised by ther in the algebra context.

This paper has highlighted the extent to which the pupil’s understanding of
varfable in algebra is related to their use of varfable in Logo. The
evidence suggests that pupils can use their Logo derived understanding in
an algebra context. Possibly one of the most important aspects of the
function machine material in helping the puptls to make links was that it

provoked the pupils to use a range of varfable names, including single
letter names.

Footnote 1

As part of the reseerch programme “Concopls in Seccndery Mathematics and Science” just Lnder
1000 sacondory pupils aged 14+ were tested on their undarstonding of algebra (generallsed
o ithmetic) {Kuchemann 1981).

References

BOOTH, LR, (1984), Algebra: Children's Strategles and Errors,
NEER-NELSON.

KUCHEMANN, DE., (1981), ‘Algebra fn HART, K, (td), Children's
under tics: 11-16, London: Murray.

SUTHERLAND, R., (1987) , What are the Links between Variable in Logo and
Variable in Algebra?, Paper for Recherches en Didactiques des
Mathematiques, in press.

SUTHERLAND,R., & HOYLES, C.(1987), The Wav we Learn: insights about
Children, Computers and Mathematics in a Logo Environment, in press.

VERGNAUD, G., & CORTES, A, (1986), Introducing Algebra to “Low-Level®
8th and 9th Graders, _Proceedings of the Tenth International Conference
for the Psychology of Mathematics Egducation, University of London
Institute of Education.

WAGNER, S, (1981), "An Analytical Framework for Mathematical
variables®, Proceedings of the Sth IGPME Conference, Grenoble, France.

277




A

E

- 248 -

COMPUTER PRESENTATIONS OF STRUCTURE IN ALGEBRA

Patrick W. Thompson
Alba G. Thompson
Illino1s State University

Many errors committed by swudents of algebra appear 10 be a result of their long-term
inattention to structure of expressions and equations. A special computer program was
developed that enabled students to manipulate expressions, but which constrained them to
acting on expressions only through their structure. Eight leaving-seventh graders used the
program for eight days. An analysis of their actions indicated that ervors due o inattention
1o structure occurred largely while they were first learning a field property or identity, and
that afterwards such errors were infrequent.

Typical errors found in previous studies of students’ errors in algebra suggest that
students studying algebra frequently fail to realize that formulas in mathematical symbol
systems have an inrinsic structure (Lewis, 1981; Matz, 1982; Sleeman, 1982, 1984,
1985). In algebra, expressions are structured explicitly by the use of parentheses, and
implicitly by assuming conventions for the order in which we perform arithmetic opera-
tions. It is hypothesized that many of students’ errors in manipulating an algebraic ex-
pression are due to their inattention to the expression’s structure.

To test this hypothesis, we
butlt a program, called EXPRES-

File Windows Options

)
1/2%(4x-6)m1/2°Q2°Cx-3)
Assoct
DISR DISTR
-
Loucericanrer
COMMUTE sug

SIONS, that presents expressions

and equations in two formats: in

usual (sentential) form and in the
form of an expression tree. The fig-

ure to the right shows the screen e bt
BIOWPARY UNDO

after having entered the equation Revert ][ stop

4x—6=2(x-3) and then multiplied

both sides by %— The cquation’s ex- {_ - )

pressions are shown in sentential
notation at the top of the screen. The tree representation of the equation is shown directly
below the sentential notation.

To change an expression by the use of a field property or aiber transtormation,
students put the mouse pointer on i9p of one of the buttons along the right side of the
screen and then click the mouse to select that action. Then they put the pointer on top of

the operation n the tree representation of the expression which defines the expression or

O
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subexpression to be transformed, and click the mouse again. The action is performed on
the selected expression or subexpression, and the sentential notation and expression tree
are changed accordingly.

To transform an expression by the use of an identity, students put the mousc
pointer on top of the ID button, click the button, and then click the operation sign within
the tree which defines the expression t0 which the identity is to be applied. The computer

will apply one of the identities a~b = a+ b, x;: x* l; -x = ~I*x, or x = I*x 1o the

chosen expression or subexpression, then update the expression tree and sentential dis-
play accordingly.

Sample

The sample consisted of eight leaving-seventh graders——six males and two fe-
males—from the 1SU elementary laboratory schcol and who volunteered to participate in
the study. Their mcan age was 13 years 1 month: their mean cumulative mathematics
score on the Jowa Test of Basic Skills was 74.6. In the last quarter of seventh grade
mathematics, five students recei /ed an A, one received a B, and two received a C.

Method

The study took place over nine consecutive weekdays in June of 1986. The first
session was devoted to administering a pretest; eight sessions (50 minutes each) were
given to direct instruction and practice. The pretest involved assessing students’ knowl-
edge of the conventions for order of operations (evaluating numeric expressions), their
knowledge of field properties, and their knowledge of variables.

Instruction took place in a classroom at ISU, where the instructor used a
Macintosh runiing EXPRESSIONS. The Macintosh was connected to a projector which
created a 6’ x 6" image of the screen. All instruction was videotaped.

For practice sessions, students were grouped in jsairs by matching their cumula-
tive mathematics score on the lowa Test of Basic Skills. Practice sessions took place with
students in two locations: in a computer room and in the classroom, with two students per
computer. Students using the classroom computer were videotaped. Each pair of students
was videotaped once. A set of booklets containing examples and practice problems werc
provided to each student. All students used a version of the program that stored their
keystrokes and mouse—<licks in a data file which could be “played back™ for later analy-
sis.

Instruction procecded in this order: order of operations in arithmetical cxpres-
sions; field properties as transformations of arithmetical expressions; identitics and
derivations. An outline of the eight days of instruction is given in Table 1.

O
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Day In Class
2 Order of operations; Evaluauing expressions
3 Parcatheses; Expression trees
4 Discuss Worksheet 2; Commutativity.
Associativity; Example from Worksheet 3

6  Review commutauvity; associativity;

troduce distributing and collecung Workshect 3 (Part 2)
7 Worksheet 3 (Part 2); Worksheet 4
Review ficld properties; introduce idenuties
Worksheet § |

In Groups
Workshect 1 (Parts | & 2)
Worksheel 1 (Pant 3); Worksheet 2

Worksheet 3 (Part 1)

Table 1. Summary of instruction
The worksheets comprised an integral part of instruction. Table 2 shows the nu-
meric-mansformation problems students worked in sessions 6 and 7. Table 3 shows the
identity derivation problems students worked in session 9.

N4. (6+75)*(6+5) (6*6) + ("5*S)
N5. 3*(8+4) + 9*%(4+8) (9+3)*(8+4)

N6. 3*(6/9) + (6/9)*7 10*(6/9)
N7. -5*3 + (2+3)*5 0+10
N8. (5+9)*(5+9) 5*5+90 +9%9

Start With Change i To
N1, 5%(443) 3*5 + 4*5
N2. 5%((4+3)+2) (5*4)+((2+3)*5)
N3, (7+3)*(6+5) (T*6+7*5)+(3*6+3*5)

SwnWith  ChangeltTo

Il. (z-q)*u z*u - q*u
12. r*(sh) (r*s)it
3. -(p+q) Pp+-q
14. (a+b)lc a/c + b/c
15. 6x +x x

I6. S5x -x 4x

17. x+x 2x

Table 2. Numeric transformation problems.

Results

Table 3. Identity derivation problems

Six of the eight students processed numeric expressions from left to right, ignor-
ing conventions for order of operations (e.g., 8 - 6 + 5 * 3 evaluates to 21), when
grouping was not given explicitly. All eight were familiar with commuuativity. Seven
were familiar with associativity in its simplest form. None was familiar with distributivi-
ty. Six differentiated among expressions and equations on the basis of superficial charac-
teristics (e.g. “y+2=5 is different from x-2=5 and x+2=5 because it uses y and the cthers

use x.")

2'\:_) n
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Analysis of computer use
EXPRESSIONS was modified to store all interactions. The stored files were then
later rerun for analysis. Students’ actions were categorized according to the following

scheme:

A Appropriate transformation applied at an appropriate place in the expres-
sion, given the current and goal expressions.

1A Inappropriate transformation, ¢.g. trying to use the distributive prope:ty
on (a*b)+c.

AWP Appropriate action, but applied in a wrong place. This was inferred ifa
student tried the same transformation twice in a row, first trying it at an
inappropriate place in the expression and then applying it appropriately.

CD  Confused direction. An action was placed in this category if a directional
transformation was appropriate (such as using the associative property of
multiplicatior; to change the grouping from being on the left to being on
the right) but the student chose the wrong direction.

Table 4 shows the percents of students’ actions falling within cach category while

working the numeric transformation problems (Table 2). Table 5 shows the percents of
students’ actions falling within each category while working the identity derivation prob-

lems (Table 3).
A__IA AWP @D A__[A _AWP D
Problem Problem

N1 87 0 0 13 n 41 48 6 6
N2 75 25 0 0 2 * * * he
N3 69 9 17 6 13 . * * *
N4 60 31 8 1 14 6 23 0 8
NS5 82 0 18 0 15 56 38 6 0
N6 88 0 0 12 16 81 12 6 0
N7 56 39 5 0 17 g0 20 O 0
N8 89 11 0 0

Table 4. Numeric transtormations: Table 5. Identity derivations: Percent per

Percent per category of all ac-
tions. All students completad all

category of ail actions; “*” indicates
incomplete data .

problems.

In many cases, the majority of inappropriate actions occurred early in a problem,
suggesting that students were exploring the effects of the available trarscformations upon
expressions. To climinate the effects of exploratory errors upon the percents in Tables 4
and 5, the data were reanalyzed by the same categorization schemne as previously, but

with this exception: All actions prior to two consecutive appropriate actions were discard-

O
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ed. Tables 6 and 7 show the percents of “non-exploratory” actions falling within each of
the categories.

The differences between Tables 4 and 6 and between Tables § and 7 suggest that
students’ errors were due to initial play involved in understanding the problems, under-
standing the available transformations, and making connections between the two. Once
students internalized the wansformations' structural constraints, they were less likely to
commit errors and were more efficient in their solution strategies.

A __ 1A _AWP (D A__ A _AWP D
Problem Problem
N1 100 0 0 0 11 58 39 3 0
N2 9 S 0 0 12 * * * *
N3 8s 7 4 4 13 * * * *
N4 92 4 0 4 14 86 0 0 14
NS 82 O 18 0 i5 100 0 0 0
N6 88 O 0 i2 16 100 0 0 0
N7 100 0 0 0 17 100 0 0 0
N8 94 6 0 0
Table 6. Numeric transformations: Percent fable 7. ldentity derivations: Percent per
per categofy of non-exploratory ac- category of non-exploratory ac-
tons. tions; " indicates incomplete data

Exploratory errors were commonly either irrelevant to the problem being solved
(e.g., “what does this button do?") or were atternpts a2t doing something that might take
an expression closer to its goal state. For example, one error was to try to use associativ-
ity to change (a+b)*c into a+(b*c), 10 which the computer “responded” by doing noth-
ing. The students wanted b to be multiplied by ¢, and apparently concluded that the asso-
ciative property would do that regrouping for them. Also, it was common for students to
repeat an errorful action. It appeared that repeaung an action supported students in their
attempts to reflect on the reasoning they used in first choosing the action, and supported
them in understanding the reason that the chosen transformation did not accomplish
whatever they had in mind.

Discussion

Previous studies of students’ errorful manipulation of expressions and equations
proposed that their errors are duc to mal-formed rules—pernturbations of correct rules.
This study asked whether or not such errors were due to students’ inattention to structural
features of expressions and transformations thereupon. The results suggesi that mal-rules
need not be a natural occurrence when students operate in an environment that sugports
explicit attention to expressions’ structures, and where structure also imposes constraints

El{llC RED
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on students’ actions. We cannot say from the results presented here that errors reported in
previous studies were due to students’ inatrention to structure, but these results indicate
that attention to structure is an important consideration. '

Students could attempt errorful transformations of expressions while using the
computer, but the computer would not carry them out. It appeared that they im.erpreted
this context as one where experimentation became naturai and beneficial. We would like
to think that students disposition to experimentation was a result of the software and the
use made of it. However, it also could have been a result of the instructor’s style of in-
struction, or it could have been that this particular group of students was predisposed to
experimentation and reflection.

A limitation of the study is that students were not assessed outside of the comput-
er enviropment. It is quite conceivable that had these students been left to their own de-
vices, they would have committed errors on paper and pencil that they learned not to
make while using the computer. The issue of transfer from computer to noncomputer en-
vironments requires extensive rescarch.

Another limitation of the study is that we do not know the depth of commitment
(hat these students had when they “proved” that two expressions were equivalent, or
when they derived an identity. Did students think of an identity as a theorem that could be
applied in other contexts? We do not know.

A feature of structure which we could not address here with data, but which was
addressed explicitly in the study, was thac of variable. Many problems (all of those in
Tabies 2 and 3) were designed so that students wouid have to treat a subexpression as a
unit. When applying field propertics and identities to expressions, students regularly
needed to substitute a subexpression in an expression for a letter in the canonical state-
ment of a property or identity. They became quite adept at this. Also, students felt no dis-
comfort when letters were first introduced in to-be-transformed expressions. Apparently,
by having them transform numerical expressions, they became used to the idea that ex-
pressions could be manipulated regardless of their constituent elements. Thus, when let-
ters were introduced, students saw no obstacle in continuing what they had already
learnied 1o do with numerical expressions. The approach wherein manipulating algebraic
expressions is presented as a natural extension of manipulating numerical expressions
deserves further research.

The use of expression trees as one of the representational systems within the
computer program proved to be a positive feature of instruction. Students found expres-
sion trees to be quite intuitive. When doing Worksheet 1, which focused upon evaluating
expressions given in sentential form, students used EXPRESSIONS only to check their an-
swers. They were told only that they needed to click SIMP and then click the top of the
tree to evaluate an expression. We found four students who constructed expression trees

for complex expressions as an aid to evaluating them, even though there had been no dis-
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cussion about how expression trees are constructed, and these students had never before
seen an expression tree.

Finally, it should be noted that in cight days of instruction these leaving-seventh
grade students went from essentially no working knowledge of order of operations to de-
riving algebraic identities, and did so with some depth of understanding. Even with the
limitations stated earlier in this discussion, the fact that such coverage is possible makes
us question assumptions that are built into traditional junior high school pre-algebra and
algebra curricula about what one can expect of junior high school students in the United
States.

References

Sleeman, D. H. (1982). Assessing competence in kasic algebra. In D. H. Sleeman & J.
S. Brown (Eds.), Intelligens tutoring systzms (pp. 186-199). New York: Academic
Press. ’

Sleeman, D. H. (1984) An attempt io understand students’ understanding of basic alge-
bra. Cognitive Scicrice, §, 387-412.

Lewis, C. (1981). Skill in algebra. In J. R. Anderson (Ed.), Cognitive skills and their
acquisition (pp. 85-110). Hillsdale, NJ: Erlbaum.

Matz, M. (1982). Towards a process model for high school algebra errors. In D.
Slecman, & J. S. Brown (Eds.), Intelligent tutoring systems. New York: Academic
Press.

Sleeman, D. H. (1985). Basic algebra revisited: A study with 14-year olds. International
Journal of Man-Machine Studies, 22, 127-149.

Aruitoxt provided by Eic:




- 255 -

THE EFFECTS OF MICROCOMPUTER SOFTWARE ON INTUITIVE
UNDERSTANDING OF GRAPHS OF QUANTITATIVE RELATIONSHIPS

N. Zehavi, R. Gonen, S. Omer & N. Taizi
The Weizmann Institute of Science

ABSTRACT

In this paper we describe a software which we designed to
help develop intuitive readiness for the encounter with graphs
of linear relations. A study was conducted to evaluate the
effects of the software on 7th grade pupils (experimental
group n=78, control group n=67). Pupils demonstrated intuiti-
ve understanding of graphical solutions of linear equations
and inequalities. Eight months later a retention follow-u
study was applied to the same pupils (now in the 8th gradeg,
just before they started the study of graphs of linear
equations. Although the software seems to have been only
moderately effective, retention of what was learnt was good.

whereas most junior high school students successfully read and plot points,
they have difficulties in understanding the relations between the two co-
ordinates of points. For example, Hart (1980) found that the relation
between straight lines and their equations was understood by only 5-30% of
students (depending on age). Some of the difficulties that junior high
school students experience in the study of graphs of quantitative relat-
ionships, may be due to the necessity for a higher degree of generalizat-
jon and abstraction than that they have met previously. Butler (1970)
maintains that the difficulty may decrease if we teach in such a way that
learning activities become intuitive ingredients of future concepts and

relations.

The role intuition plays in developing a true understanding of mathematics
is emphasized by Kline (1971), Fischbein (1978) and many others. Kieran
(1981) investigated how students intuitively extend their existing know-
ledge in relation to algebraic notions and Dreyfus & Eisenberg assessed
the intuitive background of junior high school students as they developed
the concept of function. They agree with others that enlarging the base
of intuition is a primary goal of education.

The Science Teaching Department at the Weizmann Institute maintains a
curriculum project in mathematics for the junior high school. In our
program, as in others, we observed students' difficulties with the concepts
of graphs of truth sets which are dealt with in Grade 8. It seems that

reading and plotting points in Grade 7 gives some familiarity with the
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coordinate system, but it does not prepare the students for the encounter
with the more abstract concepts in Grade 8. The idea was to lead pupils
to intuitive understanding of relations between the two coordinates of a
point, as a part of the introduction to the coordinate system. We felt
that the microcomputer could be more efficient than other media in achiev-
ina this aim. Green Globs by Sharon Dugdale {1984) is an exemplary piece
of software. In a gaming environment students develop good sense of the
relation between the algebraic and graphical representations of functions.
In this paper we shail describe another software, Dots and Rules, which
we designed to help develop intuitions on graphs of linear relations.

DOTS AND RULES

Dots and Rules offers activities which teach the two-way transfer skill:
point == rule. The pupil has to identify which points fit a given rule
or which rule fits a given point. A1l rules are linear and when the
student finds among the given points, all those satisfying a particular
rule, the picture of the straight line on which these points lie clearly
emerges. Visual elements like shapes and colors are used to illustrate
the relation between the rules and linearity (see Figure |, without the
colors...).

(”—7 ....... : ......... DOTS ARD RULES _‘\\

................. PART ONE

SCOREBOARD

[sN-N-¥ % ¥ J
[-J=N-R X X J
cocoeee
[-N-R=0 2 ¥ J
[eXeNoRa) ¥ J

ULE 1: SUH OF COORDINATES IS ~ M
LE 2: COORDINATES ARE EQUﬂL i
RHLE § SUH OFOCOORDIHGTES IS ~8. L]

i CHOOSE RULE WHICH FLASHING DOT OBEYS: <‘//

Figure 1
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The tasks are imbedded into various activities, from a tutorial on the
basic tasks to a competitive game for two players (see Figure 2).

/ GAME FOR THO: FOUR IN A RON \

wonowow e PLAYER 1....... ]
' . CHOOSE RULE
.|.....|.....|.....|.....|.....‘. “ u....... TN
€0« PLAYER 2....... '}

Figure 2

If player 2 chooses rule 3 and jdentifies the point (3, -1}, he completes
two "fours" and scores 2 points. While playing, the pupils realize that
the point (3, -1}, for example, can be caught by other rules as well (e.g.
y - coordinate is -1; the sum of the coordinates is 2). The software is
not intended to teach the explicit relation between straight lines and
their equations, rather its aim is to create some rule-based orientation
in the coordinate system, which will provide the intuitive preparation
for the introduction of graphs of linear open sentences.

The use of a microcomputer has some didactic advantages; it enables the
student to practice different rules with the same pattern, for which the.
points appear in various parts of the coordinate system. There are, of
course, pedagogical advantages like challenge, motivation and feedback in
the use of the microcomputer.

In the following we describe the method and results of a study that
investigated the effects of Dots and Rules in terms of its aims.
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METHOD

Two Jjunior high schools were involved in the study. The schools are
Tocated in neighboring urban suburbs having similar socio-economic popula-
tions. But schools are of about the same size and use similar criteria
for streaming their pupils. Three grade 7 ciasses with average ability
students, from each school participated in the study. The classes in one
school formed the experimental gcoup and the others were the control group.
A three part questionnaire was prepared, some of the items were in a
multiple choice form and others more open.

The first part contained 6 items which test familiarity with the coordina-
te system. In addition to items on reading and plotting of points, we
asked for some generalization; e.g., to identify a property of points on
the x or y axes.

The second part contained 7 items and tested the transfer skill:

point —~rule, which was explicitly dealt with by the software. For
example in item 10 we asked the pupils to identify rules satisfied by the
origin (0,0), from the following list of rules:

(a) the coordinates are equal

(b) x is greater than y by 3

(c) the sum of the coordinates s 3

(d) y - coordinate is 4

(e) y is twice x.

The third part contained 13 items which go beyord the scope of the explicit
activities of the software and test intuitive rule-based orientation in
the coordinate system. For example, in item 29 we asked the pupils to
identify all grid points which have the two properties: (a) the coordinates
are equal, and (b) the sum of the coordinates is 2. The Kuder-Richardson
reliability index for the whole questionnaire is 0.91, for subl - 0.67,
for sub2 ~ N.79 and for sub3 ~ 0.87.

In March 1986 the software was used by the experimental classes in paral-
lel with the regular introduction to the coordinate system. Treatment of
the transfer skill point <= rule was given to the control group without
the computer. Then, 'the questionnaire was given to both experimental and
control groups, and the results compared. Eight months later (November
1986) the questionnaire was applied again to the same classes (now in the
8th grade), just before they started the study of graphs ¢f linear
2quations and inequalities. The results were compared for the experiment-
al and control groups and also with thz previous results.
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RESULTS AND DISCUSSION

The mean scores (maximum 100) for the whole questionnaire and for the
three subquestionnaires are given in Table 1.

Experimental group Control group
post treatment retention post treatment retention
(n = 78) (n = 67) (n = 77) (n = 74)
Total 76 77 A 63
Subl 82 85 85 76
Sub2 83 82 67 58
Sub3 N 69 66 59
Table 1.

The results are about the same for the two groups on Subl at the first
application, indicating that average ability is about the same. Although
a significant drop in retention occured for the control group we hesitate
to draw conclusions since there were only 6 items in Subl. As anticipated
there are significant differences in favor of the experimental group on
Sub2. However, the most important finding is in the results of Sub3
which tests the main goal of the software. Alihough the software seems
to have been only moderately effective, retention of what was learnt was
good.

To illustrate difficulties which were only partly overcome by the soft-
ware, we bring the findings for item 10 of Sub2 mentioned above. More
than 95% knew that (0, 0) fits the rule "x=y", in both groups and both
applications. But only 44% of the experimental group realized that it
also fits “y=2x" in the post-treatment test, and 50% in the retention
test. As for the control group, only 8% (1) responded correctly in the
first testing and 30% in the second. The “jmprovement" can be due either
to the fact that we used the same test, or to students' experience with
graphical presentation of practical situations at the end of Grade 7.

To illustrate the development of some intuitive ruie-based orientation,
we bring here the results for three jtems of Sub3.
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Item 20 (see above):

A response was considered correct if the point (1, 1) was identified in the

the graph.

Correct responses (%):
Experimental group (grade 7) - 64
Control group (grade 7) - 42
At the second application,
Experimental group (grade 8) - 75
Control group (grade 8) - 55

1}

The increase in correct responses from grade 7 to grade 8 is due to the

use of some algebra by the latter.

Item 18:
State two properties
of the marked point.

(a)
(b)

........

The results were about the same in the two applications of the test, with

a clear advantage to the experimental group.

than 25% gave only one rule;

second was "y=1".
rule.

more "interesting” ruies.

Item 25:

In the control group more
the common first rule was "x=-2"and the

In the experimental group less than 10% gave only one
The above responses were given by about 30%, and the rest stated
The most popular were: “the sum of the coordi-
nates is -1", and "y is greater than x by 3“.

In each quadrant in which it is possible, mark a grid point for which the

sum of the coordinates is greater than 5.

The given coordinate system was 8x8 (with the origin at the center) and
a response was considered correct if correct points were marked in

quadrants I, II and IV.

Correct responses (%):
Experimental group (grade 7) - 75
Control group (grade 7) - 61
At the second application,
Experimental group (grade 8) - 73
Control group (grade 8) - 57

In addition, about one fifth of the experimental students attempted, with-
out being asked, to give a full graphical solution to the given inequality.
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CONCLUSION

The results indicate that software of this kind can be effective in
achieving its main goal - creating intuitive readiness for future
concepts. Students related a point to several rules, they "saw" lines
and illustrated graphical solutions of quantitative relationships. More
software with similar goals for other topics in algebra nas been
developed. It is likely that the increased use of this media will affect
approaches, teaching strategies and the organization of the course.
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This reaction has been commission=d by the PME X1 organising comtnitee to consider the
contribution of each paper groupe¢ under this heading, to seck common threads, to
formulate major questions that still need to be answered and to look for indications in the
papers as to how these questions might be tackled. The task is a daunting one. It is rather
like attempting to put together a jigsaw puzzle whose pieces were not created to fit together
in a master plan, each with a life of its own. It is a problem-solving activity and I shall
approach it in a problem-solving spirit. In doing so 1 should I;'.c to acknowledge the help
given me by Michael Thomas in formulating this reaction.

LThe contribution of the pagers to the research area

The papers grouped under “algebra in a computer environment” range widely from initial
ideas in the subject 1o the graphical representation of algebraic functions, and some expand
the domais to more general functions and analytic relationships between variables and their
rate of change in “feed-back sysiems”. Although these would not all be classified
mathematically within algebra, they cognitively embrace algebra concepts, beginning with
the translation from reat world problems to algebraic notation, with its surface syntax and
underlying semantic structure, inking with relationships to other representational systems.

‘The papers also represent very different stages in the research process which are fruitfully
considered from a problem-solving viewpoint, passing through various phases after the
style discussed by Mason et al. (1982). An initial entry phase gathers together what is
known, what one wants 1o know, and what tools one might assemble in preparation for the
attack phase wherc the empirical work is done. This may result in an impasse or a
significant gain, when it becomes appropriate to review and refine what has been
achieved before cither re-er*ering the problem for a different attack, or extending the
work in new areas through a new a spiral of entry, attack and review.

Some of the papers have completed a full research cycle, others describe only pan of a
longer span, for instance, the entry phase to new rusearch, reviewing the literature from
earlier phases, proposing theories and setting out plans of attack,

Boileau er al, are beginning a new phase of attack in *La Pensée Algorithmique dans
I'initiation a I'algebra". They propose to start the study of algebra with activities that
arc "both significant and motivating to the student”, "coding problems ... telating to the
students’ prior expericnce” by providing a “tailor-made programming language which will
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scrve as an intermediite representation ... between the problem to be solve and the final
coding.” They formulate some characteristics of the environment but stop short at giving
information as to the state of the developnient of the systemt or any empirical testing, Their
distinction between thesyntactic, internal semantic and external semantic aspects of
algebra is one which may prove a useful link with other papers.

In "Delieving is secing: llow preconceptions influence the perception of
graphs"”, Goldenberg begins an entry phase, based on experiences using computer
software and preliminary observations with two “"bright, successful, second year algebra
students”. He leads into a discussion of “how perceptual illusions and shifts of attention
from one feature to another obscure some of what educational use of graphs is supposed to
iltucidate", particularly where the representation lacks familiar perceptual clues, thus
raising some concem as to the efficacy of certain aspects of multiple linked representions.

Thompson & Thompson introduce some significant new software in "computer
representations of structure in algebra", linking an algebraic expression ot its tree
structurc allowing free mixing of numbers and letters. They have made an intial cmpirical
attack with a week's instruction/exploration of the software with eight seventh-gradz
students. They report that the students "felt no discomfort when letters were first
introduced in to-be-transformed expressions” and that, after an initial period of
experimentation, errors due to inattention to structure were infrequent.

Judah Schwartz also has a reputation for producing innovative sofiware and his paper on
"the representation of function in the algebraic proposer" is no exception in
this respect. The original proposal had hoped to include empirical research with 12 college
freshmen, but, in the event, the paper is restricted to a presentation and discussion of the
software only, giving a tantalizing glimpse of the possibilities of providing a word problem
an algebraic description and interrclating it with graphical and numerical representations.

Dreyfus and Eisenberg present a complete research cycle "on the deep structure of
functions", entering with a theoretical framework for analysing aspects of the function
concept, empirical knowledge of student misconceptions, and a constructivist approach to
abstraction using computer microworlds. They hypothesise that the understanding of the
relationship between the algebraic and graphical representation of a function is facilitated
by using a specific picce of software and that this can be improved by providing structured
activities for the students. One group of cight students worked in a highly structured
teaching environment whilst a second group were allowed to explore freely. A pre- and
post-test revealed a significant improvement by both groups on “non-standard” questions,
relating to shifting and stretching transformations on graphs, but the difference between
groups was not significant.

In "Dicnes revisited: multiple embodiments in computer environments", Lesh
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& Herre report part of a major on-going project of research and curriculum development
which reveals "significant ways that computer-based instruction can encourage teachers
and students to make greater use of activities with concrete materials... at the same time ...
implementing some of the best instructional strategies associated with mathematics
laboratories”. They discuss & symbol-manipulator/function plotter called SAM which
provides direct links between algebraic manipulation on equations and the graphical
representations of the functions on each side of the equals sign. The general questions

raised are broad and important but the page restriction regrettably leaves no room to report
empirical results.

Zehavi et al cover a complete research cycle in "the effects of microcomputer
software on intuitive understanding of graphs und quantitative
relationships”. They describes a new piece of software, "Dots and Rules", designed to
help intuitions on graphs of linear relationships, tested using pupils of “average ability", in
three experimental classes compared with three control classes, selected from similar
schools. Tests were given immediately after the treatment and eight months later and
showed that "although the software scems to have been only moderately effective,
retention of what was learnt was good®, "The results indicate that software of this kind can
be effective in achieving its main goal - creating intuitive resdiness for future concepts.”

Two papers look at the role of programming in Logo and its relationship to 'paper and
pencil' algebra. Sutherland outlines the preliminary results of a three year case study on
".. the use and understanding of algebra-related concepts within a Logo
environment", She reports that "analysis of the data indicates that most pupils do not
naturally choose to use variable in their Logo programming, although with teacher
intervention it is possible to find motivating problems which provoke pupils to use
variables”. Under these circumstances there is evidence that "pupils can use their Logo
derived understanding in an algebra context”,

In "using micro-computer assisted problem-solving to explore the concept
of literal symbols - a follow-up study®, Nelson interviewed three "average ability
students” a ycar after a study in which they had been "taught to use Logo to solve
problems involving number sentences, rectangles and recursion”, They remembered most
of the Logo commands used a year before, though none recalled the MAKE command for
variables and "were able to use literal symbols to represent missing dimensions of
rectangles when writing expressions for area”. The author concludes that "microcomputer-
oriented problem solving has a long-term effect on the concept of literal symbols".

Two other papers beginning new entry phases of research pass beyond algebra into
concepts linking variables and their rates of change. In "Un systéme d'apprentissage
de I'abstraction par représentation graphique"”, Nonnon describes software
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allowing young pupils to control the mation of an electric train, and simultancously to s=¢
its position graphed as a function of time, to enable them to acquire a graphical coding
language to predict the interaction between the variables for distance, speed and time. The
prototype software has been trialled, using pre-test and post-test to show a significamt
improvement in predicting and interpreting relationships between the three variables.

Garangon & Janvier report the entry stage into new research in "the understanding of
feedback systems with micro-computer software". They formulate the general
notion of a feed-back system as "a set of mathematically defined relations between
variables" which can “generally be expressed as a set of differential or difference
cquations”. They envisage the understanding of the system as & form of coordination of
three representations of the system: an iconic representation of the feed-back loop relating
the variables, the superimposition of the cartesian graphs of the variables as functions of
time, and the phasc plane diagram representing the implicit relationship between the
variables. Current mathematical research into dynamical systems shows just how complex
these systems can be and one looks forward with interest to the results of research into
students' understanding of the specific sysiems designed for the research program.

Links j ¢

1t will already be apparent that the papers cover a wide range of activitics. A closer
inspection also shows that no §wo papers cite a common reference. (As a humorous aside,
I found it pleasant to sec that I am not the only author who refers to my own papers more
than anyonc else...) Despite the apparent anarchy that this may imply, there are certain
underlying trends that can be seen.

More than half the papers use softwarc that links algebraic notation to a graphical
representation, one links a real-world situation with a graph, one links the algebraic
representation of an expression to its binary tree structure.

Kaput (1987) has suggested four sources of meaning in mathematics:

1. By transformations within, and operations on, a particular representational
system, )

2. By translation across mathematical representation systems, i

3. By translation between mathematical and non-mathematical representations
(such as natural language, visual images, etc.). ) ) i

4. [Reflective abstraction] By the consolidation and reification of actions,
procedures and concepts into phenomenological objects which can then
serve as the basis of 12w actions procedures and concepts ata higher level.

It is helpful to review the papers within this framework to sce their span over a range of

activities. For instance, Nonnon links a graphical interpretation to the real world which
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“permet A I'é1eve d'acquérir un langage graphique de codage ... acquis au seul
contact de la réatité, sans support verbal."

Boileau et al zlso wish to link the pupils' experience with mathematical concepts, this time
through programming, whilst cther papers concentrate more cn translation between
systems. When one of those systems is graphical, it is often seen as a more “intuitive"
system". Fox example, Zehavi ef al. comment that the main goal of their software is
“creating intuitive readiness for future concepts",

Yet Goldenberg wams of difficulties with multi-representational software:

"Common-sense supports the untion that the use of more than one
representation of a function will help leamers understand what remains less
clear when only one representation is used. Presented thoughifully, multiple
linked representations increase redundancy and thus can reduce ambiguities
that might be inherent in any single representation ... taken together, multiple
representations should improve the fidelity of the whole message. The
theoretical arguments ... are reasonable enough, but they may not be valid."

His case questioning validity is based on his two subjects' misconceptions of the nature of
graphs. Other research supports this concern. For example, Nachmias & Linn (1987)
show that a computer-generated graphical representation of a conling curve of liguid in
real-time was misinterpreted by 30% of the children involved, because the large pixels
on-screen gave the impression that the liquid remained at s constant temperature for a time
and th=n suddenly dropped a little (to the next pixel level). These students believe in the
absolute veracity of the computer. My own observations using computer graphs with older
children students suggest that it is possible to discuss such limitations meaningfully, but
there are clear indications of conceptual obstacles that need to be researched.

Lesh & Herre suggest that

"Good problem-solvers are flexible in their use of various representational
systems - they instinctively switch to the most efficient representation at any
given point in the solution process”.

Although preliminary empirical data shows the value of multiplc linked representations,
more daia of how students of differing ability and experience cope will be of great value.

2.2 Microworlds and the Role of the Teacher

The vision of Papert was thut, by giving children access 1o rich microworlds, such as
programming in Logo, they would develop “powerful ideas”. The reality of this vision is
that they may not-.¢velop the powerful ideas that may be deemed desirable. For example,

the children in the Sutherland study "did not naturally choose 1o use varables in their Logo
programming” and teacher intervention was necessary to provoke suitable activities.

Dreyfus and Eisenberg comment on the "partial success" of several experiments using
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microworlds in "achieving a process of abstraction on the part of the student” and question
mwhether the framework needs 6 be revised”, They conclude that “this does not scem to be
appropriate” as the studies were "rather short term" and “extremely ligh level activitics are
required for the processes involved in abstraction in general”. They hope that "longer and
more systematic cxposure to dual and triple representations of mathematical objects will
achieve a clearer effect ... but at present this is simply speculation”.

A noticeable feature of the papers is the variety of different meanings given to a variable.
The pupils in Sutherland's study all used (locsl) variables as inputs to procedures whilst
those in Nelson's used global variables with the command MAKE (which they
subsequently forgot). Neither paper refers to the difference between a variable in algebra
and in programming. (For instance, a Logo variable has & name "X and a value :X.)

Although Boileau er gl consider clementary algebra as "minimalement l'algtbre des
polyndmes en urne indeterminée, mais aussi les fonctions Finéares, quadratiques,
trigonomiétriques, exponentielles et logarithmiques”, they later speak of

“des fonctions (toujours aigorithmiquement calculables) definies sur des
ensembles de nombres, éventuallement représentées par des tableaux de
valeurs, des graphes cantésicns, ou des algorithmes de calcul™

which suggests the possibility of more general procedures. Interestingly, no paper
mentions procedural functions even though , when "Al ... earns $6 por hour if he works
15 hours .... {and] gets paid tine and a half for overtime” {in Lesh & Herre), his actual
wage, for any number of hours, can be calculated in Logo as

TO WAGE "HOURS

IF 1HOURS<15 {OP 6 * :HOURS] [OP(6* 15) +9 * (:HOURS - 15) ]
END

or in structured BASIC as

DEF FNwage(x): IF x < 15 THEN «=6%x  ELSE :=6*1549*(x-15).

Either of these will easily generate a full table of values for his wage against-the nuinber of
hours worked (normal and overtime), giving a more interesting and realistic function than
the algebraic expression for overlime only.

1n Thompson's Expressions Microworid, letters have a more abstract use, standing either
for numbers or other expressions, whilst, in some other papers, variables are pans of
formulae felated to graphical representations. Only Lesh & Herre and Thompson &
‘Thompson concem themselves with the manipulation of expressions. Lesh & Herre make
the important observation that “the possibility of first describing, (hen calculating is
one of the key features that distinguishes algebra from arithmetic®. It is telling to note that

Q
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Sutherland'’s Logo pupils without algebra experience use variables only to store numbers,
not to manipuilate them,

» ology

Of the cleven papers presented, only two have a traditional experimental v, control
nethodology, two use pre- and post-tests with the experimental students only whilst others
used observational techniques or clinical interviews. Sutherland chose cthnographic
methodology “as being the only one possible in.an area where technology, pedagogy and
the approach to mathematical content were all innovatory", Perhaps different techniques are
required in different phases of research, with cthnographic methods more suited to the
eniry phase and a traditional methodology more suited to review, though this division is
clearly not hard and fast.

J._Major Questions that Still Need to he Apswered

i nt
First and foremost we must begin to address oursclves to the role of algebra in & future
computcr-oriented paradigm. Most of the research presented here is concerned with the
manner in which traditional algebra may be enhanced by the computer with little cmphasis
on a modem procedural approach. Many interesting functions such as the price of a
postage stamp as a function of weight, are given procedurally rather than as a simple
formula. Modem computer programs, such as the modelling program Stelln (1986), allow
functions to be typed in as formulae, as logical expressiorss, or even as piecewise straight
pgraphs specified using sn on-screen pointer under the control of a mouse. The new
liewlett Packard HP 28C symbolic calculator allows, variables to have values including
complex numbers, vectors, matrices and lists; thus # list of information such as the details
required for drawing a graph (ranges, independent variable, rumber of points etc) can be
stored as a variable and recalied when required,

An important giobal question framing all our research should therefore be

How can we direct our use of the computer in m-themaligs
cducation to the concentrate on the algebra of the futuve, in
addition to the algebra of the past and present?

In particular we should spend a little time thinking about the role of symbolic manipulators,
My own hunch in using them is that they (at present) offer a powerful way of handling the
syntax, but the user needs to have a coherent understanding of the semantics.

It is important also to address ourselves to the question of the needs of different user
populations. Several of the research papers talk ubout pupils of "average ability" (a term
which is sometimes a little difficult to interpret). Twenty years ago (in Britain at any rate)
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pupils of average ability did not study algebra. Leitzel & Pemana (1987) suggest an
arithmetic approach to algebra. May we sometimes be wasting our time tooking at the
difficultics of sections of the population for which fonnal algebra may be of no relevance?

Should all children study the same kind of algebra, or do we need different types of
ulgebra for different populations?

Given the high profile of dynamically linked representations, it is clearly important to
obtain far more empirical evidence of their use. In particular we should ask:
In what ways do students, of differing ages, abilities and
experience, use dynamically linked representations in different
curriculum contexts, and how do they conceptualize the

relationships between the representations? What cognitive
obstacles are likely to occur in their use?

What is a suitabie theory (or theories) underlying the provision
of suitable developmentat sequences?

In what ways can multiple linked representations be integrated
into the curriculum for learning, teaching, problem-solving, and
assessment?

lere we note that the links between representations can take differing forms, for example,
Garangon & Janvier view the understanding of feed-back systems as a coordination of
three distinct representations, one of which is the statement of the problem (the feed-back
loop) and others are solutions. Other systems simply rranslate,say, symbolic information
into graphical form.

For a given system, are there simple translations between two

representations, or docs the relationship involve some kind of
solution process?

Does the "understanding” of (he relationship between two
representations involve a direct logical relationship, or is it an
intuitive one, or perhaps a combination of the two?

It would be useful to debate the interplay between syntax and semantics, in terms of the
classification proposed by Kaput, the notions of syntax and internal/external semantics of
Boileau er af and the new evaluation of Dienes’ principles as desctibed by Lesh & Herre.

A3 Programming

‘Two clearly distinct threads arise in the papers, one proposing specially designed software
to enhance leaming, the other to encourage constructive acts through programming. These
may be secn as totally separate methods of approach, or as being complementary, fulfilling
two different, but essential, roles. We ask:
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In what way are programming and the use of prepared software
complemientary, and what constitutes an uptlmum combination of
the two in terms of understanding and efficiency (time on task)?

Boileau et al speak of & new laaguage for learning algebra, whilst other papers use Logo. It
is important to discuss what kind of computer language Is appropriate, not just for doing

alpebra, but also for developing a growing awareness of algebraic structure during the
lcarning process.

3.4 The Role of the Teacher

Lesh & Herre suggest that the use of certain software will encourage teachers to take a
“mathematics laboratory” spproach 1o leaming and teaching, bui Boileau et al remark that
"En déplt de ces progres théorh}ucs. les enseignants en mathématignes somt

telativement dépourvus (}umd il s'agit d'aider les €12ves & se représenter les
telations des problemes algébriques narvatifs.”

1 suggest that teachers are not convinced by theoretical research, bus by idecs and materials
that work, for thew in the classroom. The role of the teacher should surely be an
explicit part of our theories of mathematics education. With the complexity of the

representational systems and the need for teachers to emlyace computer technology, we
must ask:

Now can we encourage leachers 10 participate actively In our
work 20 that our research is both relevant and suitable for
implementation?

15 _Axtificial. Jutelligense

Few of the papers mentlon the use of tutoring systems, though the Expressions
Microworld and the symbol manipulator/function p.otter SAM are both written in Lisp,
which gives them the possibility of being used in a more diagnostic/predictive mode. The
Expressions Microworld has been explicitly written to do sothing i€ it is given an
inappropriate command by the user, thus encouraging users to think about the
consequences of their own actions. SAM can produce solution path "traces” 10 Create many
instructional capabilities and do other things that are intended to "help students go beyond
thinking o think »' ct thinking". One view is that it is the teacher and the pupil who
provide the intelligence, in a way that cannot be provided by the machine, snother uses the
machine to infer action from a database of knowledge.

Particularly in the case of algebra, which has both & syntactic and a scmantic role to play in
mathematics, we should ask:

In what ways can computer environments be designed and used
to provide intelligent support to the learning process?

ERIC 360

Aruitoxt provided by Eic:

B R




..27'..
35[‘ l I..

This conference has constructivism as a major lhéme, and it is implicit in several of the
articles, if not always explicit. My own belief is that learning is facilitated by the intetligant
action of the pupil, with the teacher acting as a guide and mentor, and I have been struck
by the power of the computer to provide a cybemetic environment that acls in a reasonable
and predictive way 1o enable the pupil to build and test new concepts represented
dynamically by the software. But do we all share this belief?

Davis (1986) poses the fundamental question:

Every educational use of computers is based upon someone's
specific philossphy of what, exactly, is to be learned, and upon
someone's philosephy of effective pedagogy. These
"foundations" are, at present, extremely insecure.

In the present case, exactly how do we want our students to
think about algebra?

To this one must add:

HHow can we use computers to encourage studenis' aclive
participation 10 develop this algebraic thinking and to (hink
about thinking 7

4, The Way Ahead

1 am aware that although some of the questions I have highlighted arc phrased as research
questions, others are not. Our discussion must include an attempl to focus on specific
rescarch hypotheses. It was part of my brief to seek indications from the papers as to how
1o tackle the highlighted problems. As most of the authors concentrate on putting over their
own message in a litnited seven page span, it would not be fair to expect the papers to be
addressed explicitly to questions formulated after the papers were written, however, I am
confident that the collective wisdom and- expericnce of the authors may be brought to bear
in the discussion at P.M.E.
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CONCEPTUAL OBSTACLES TO THE DEVELOPMENT OF ALGEBRAIC THINKING

George Booker
grisbane College of Advanced Education
Australia

Children who have ‘not been taught any formal algebra
nonetheless bring notions both well-formed and partly-
formed to this study from their earlier work 1n
arithmetic. Yet they are often unaware of the
conflicts between earlier views and those needed to
gimplify expressions and solve equations. The 1nitial
concepts brought from arithmetic are bound to number
experiences and are imprecise because they are
explicable in terms of this experience. Algebraic
concepts are more abstract, not readily related to
experience. They involve notions of the elements being
operated upon, the operations that are performed, the
way these operations are indicated and carried out,
and the way the statements symbolising them are
interpreted. Difficulties in making the transition to
this abstract view derive from a lack of appreciation
of a need for algebraic symbols as much as from
procedural difficulties with their manipulation.

The teaching of Algebra may be perceived by students as an
inatiation into rules and procedures which, though very powerful
(and therefore attractive to teachers), are often sees by students

as meaningless.

K. Hart (1981}

Children's procedural difficulties with algebra are well known.
Most relate to the introduction ot symbolic values and the
extension of the numbers to which they refer but there are also
changes in the meaning of the concepts and operations. In
arithmetic the equals sign is predominately used to counnect a
problem with its numerical result and used in a manner that
siénifies equivalence or equality interchangeably. In Algebra
equivalence and equals have very separate meanings and uses but
this may not be apparent when an equals sign 1S used to signity

both. Further, initial work in simplifying expressions and in

O
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transforming equations may even lead children to interpret the
equals sign as a means of signifying a transformation (Kieran,
1981). The introduction of the equals symbol as a substitute for
the verb "is" or "are" also leads to an implicit assumption that
equations are always read from left to right. Yet many equations
are more readily solved if the unknowm term is grouped on the
right, leading to right to Jeft working. Attewmpts to avoid this
often introduce negative numbera, creating at least as many
difficulties as they solve.

The operations also undergo changes which need clarification,
While addition wes initially introduced as a binary operation, in
algebra the use in essentially unary; the aign is attached to the
nunber or unknowm whether its use is as an operation or to
indicate a positive value. Subtraction is also used in a unary
sense and these new conceptions are essential when numbers and
terms are collected together either by adding and subtracting like
values or by using the inverse operation in transferring from one
side of an equation to the other. Without this realisation, many
studenta simply ignore the unknown .value and collect the numbers
first, using a left-to-right order of operating rather than
combining each addition or subtraction symbol with the number or
letter it precedes. A further reason for these difficulties is
that the teaching of arithmetic has emphasised the notion that
subtraction is the inverse of addition far more strongly than the
reverse case that addition is the inverse of subtraction. This
underlies some of the tendency of children to successfully "change
the sign" when transposing values with an attached addition symbol
but not doing 80 with values that have an associated subtraction
sign.

Multiplication or division in a number situation almost always
involve multiplying or dividing with the number in question; in
algebra it invariably means using only one or some of the factors.
While it is also possible to multiply and divide numbers by using
factors, this aspect is not stressed in arithmetic despite the
attention given to writing numbers as products of their prime
factors. Multiplying and dividing by factors composed of unknowns

and numbers adds further complexities ato algebra. Indeed, what is
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really happening is that children are called on to suspend the
operation 1n algebra rather than express the result as they did in
arithmetic (Matz, 1981). As Collis (1974) has shown, the ability
to accept this lack of closure of an operation does not develop
until the child is in a concrete operational level in mathematics,
a level which may not occur until after this aspect of algebra has

been introduced.

However, it is with the use of letters to represent unknowns ,
variables and general processes that children’s difficulties are
most apparent, particularly as they ttempt to generalise
procedures, conventions and use of language from arithmetic to
algebra. In wmany instances letters in algebra behave like numbers;
they represent a single value, and the operations to detexmine
them are just the familiar operations of arithmetic operating on
the other numbers in an equation., At the same time, the initial
use of letters as ahbreviations may introduce the thinking that
they behave like words rather than numters, &s a placeholder
analogous to the use of pronouns in ordinary language. It is thas
contradictory use that while many different values are possible
for a letter in an &algebraic expression, uhenvthe same letter is
used more than once it must have the same value(s) that causes
students so much conflict (Wagner , 1983). Further conflicts occur
as the notion of variable is extended to include other unknowns
when a series of algebraic 1dentities is created to help 1in

factorising expressions.

In many ways our knowledge of children's procedural difficulties
in algebra parallels the understanding we have of children's
computational difficulties 1n arithmetic., When computational
difficulties were largely viewed as mechanical breakdowns, little
progress was made in overcoming them; efforts were made to repair
malfunctioning algorithms but these efforts were not partaicularly
productaive. In recent times, the analysis of computational
difficulties has gone a lot turther and brought out the crucial
role of children's understanding of number itself in providing for
skills and understanding in calculation. While children arrive at
school with a fairly well developed sense of number based on

counting, this knowledge by 1tself is insutficient. They need to
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build a broader understanding in terms of grouping and place value
by using concrete materials if the computational procedures are to
be mastered.

A similar transformation 1s needed of the base on which algebraic
ideas and procedures is to be built. Usually the use of letters as
pronumerals is introduced with little oy no context as "lettars to
stand for unknown nuxbers", While the use of materials to
represent these values appears attractive by analogy with the
pumber situation, in reality the material does not serve as a
forerunner to the use of letters; rather letters label the
material which is manipulated. It also leaves the question of why
these letters should themselves be the object of mathematical
wanipulation unanswered. Algebra evolved through a need for the
concise representation of general relationships and procedures,
Such a representation may then enable a wide range of problens to
be solved and allow new relationships and procedures to he derived
by logical manipulation of the old (Booth, 1986). Pxcessive
attention to this last aspect has led children to view algebra as
little wore than a set of arbitrary manipulative techniques with
little, if any , purpose. Rather than focus on this procedural
side of algebra from the outset, it would be more appropriate to
build up an awareness of the need for a concise representation of
relationships and, indeed , to focus on the determination of these
general relationships, Arithmetic has taught children to expect
answers and that each problem has its own answer. Algebra involves
the extension of general pattern finding activities in mathematics
to the identification of classes of problems which have
essentially the same result.

A sequence of experiences which lead from concrete arithmetic
situations to algebraic generalisations must establish that the
use Of letters is a useful means to express such results., A first
use is simply as labels to identify the objects being examined and
thus grows naturally out of words used to describe them in a
manner analogous to the use of letters in measurement. When this
has been established and accepted, relationships between the
objects which have been 1dentified and labelled can also be
expressed using the letters that have provided the labels. The use
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of tables of values to Show these reiati1oaships can then 1in turn
suggest more conclse Wways of expressing the results by means of
the number which 1identifies a particular entry. In this way, the
use of letters to express relationships occcurs somewhat naturally
and lays the way for using the letters themselves to find and
verify patterns. Only when the development of a generalised
arithmetic has established the need for and power of algebraic
symbols can algebra be extended to a topic in its own right and
meaningful procedures for wmanipulating the symbcls be considered.
While the difficulties that students experience with algebra
reveal themselves in the use of symbols and the rules that govern
their use, it is a lack of acceptance of the symbols as legitimate
mathematical entitles in the first place that ia the fundsmental
problex. So much is keown about the procedural difficulties that
it 1is vossible to provide the mesns to avoid or overcowe them; but
since the use of symbols has little or no meanming Xor the students
who have to manipulate them there 1s no basis for overcoming the
difficulties.

The changes that need to be made to Student's earlier knowledge
from arithmetic are usually overlooked in the development of
algebraic procedures. In particular it is the change from the
manipulation of numbers to solve for an unknown to the
manipulation of the unknouns themselves, labelled a "didactial
turning point* by Filloy (1985), that marks the entry into algebra
proper. To introduce students to the fuller algebraic meanings of
the notions they met and mastered earlier in arithgetic demands
the huilding in of conceptual conflicts when the algebraic
extenslons are introduced. There 1¢ also a need for the
broadening of topics traditionally covered in school arithmetic so
that all future needs are considered when initial concepts are
introduced in arithmetic, when computational rules and procedures

are established and when problem situations are constructed.
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But most nf all, there 1. a need to establish the usefulness of
algetralc symbolism to express relationships and eventually to
find and verify the patterns on which these relationships are
based. When the need for the objects of algebra 1s built up, both
student and teacher will work together to avoid and overcome the
procedural difficulties that arc most obviously the problem in
mastering algebra, for the need for such manipulations will no
longer be in dispute,
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EQUATIONS REVISITED
Booth, Lesiey R.
Schaool of Education
James Cook University of North Queensiond

Abstract: The idea that chifdren can be guided to construct meaning
for formal mathematical procedures from suitubly structured concrete
experiences undesties much of mathematics teaching. te this
approach, however, many children do not acquire the desired levels of
understanding. Possible reasons for this were investigated within the
context of leaming to solve lincar equations, by interviewing a sample
of six 1§-12 year old children before, during, immediately after and
three months after a concret=-based teaching program aimed at
developing a formal equation-solving procedure based on the
application of equivalent and inverse operations. Findings suggested
that children's lack of prerequisite concepts, and the use of ‘concrete’
situstions which do not appropriately mirror the formal procedure
taught, together with the ewstence of informal ‘child-methods’, may
all contribute 10 the lack of success of the formal teaching.

In many countries, considerable emphasis is placed upon the development of
concrete or experiential approaches to the leaming of mathematics. The mationale
underlying these approaches is that by providing children with appropriately
siructured concrete experiences, tne children will be guided to develop referential
meaning for the formal symbolic procedures or models which are the actual goa! of
instruction.

However, despite such approaches, it seems that many children do not acquire the
desired level of understanding of the taught models and procedures. These children
resort «ither to instrumentally (Skemp, 1976) operating within the formal symbol
systere of mathematics, often making syntactic ervors or inventing ‘malrules’ (o
Matz, 1980). or they adhere to ‘child-methods’ (Booth, 1981; Hart, 1984) which
they construct from their experiences within or outside the mathematics classroom.

This lack of success in helping children develop referentinlly meaningful symbolic

procedures has been suggested to derive from an inadequate relating of concrete and
symbolic representations (e.g. Hart. 1987). This in turn may derive from:
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(a) insufficient attention to the kinds of methods or maodels which children may have
available prior to instruction (Booin, 1981);

(b) The use of concrete situations which do not appropriately mirror the formal
model or procedure (Booth, 1976; Hart, 1986); snd

(¢) inattention prior to or during tesching to the prerequisite concepts of skitls upon
which the procedure being taught depends (of Hart, 1986).

The present study examines these possibilities within the context of solving linear

equations in one unknown.! The equation-solving procedures which chitdren used

were examined prior to, during, and after a *concretc-based’ teaching program

designed to help children develop a formal equation-solving procedure based on the

application of equivalent and inverse operations. The children’s undenstanding of

these Iatter concepts was thercfore aiso investigated at the same time, together with

other notions thought important to an understanding of the formal procedure, such as

the meaning of letters and the expression of numerical and algebraic relationships.

METHOD

One class of 11-12 year olds from the 4th year of & middie school in England was
involved in the study.? The teaching approach adopted was the approach normally
used by the class teacher, and involved the use of a ‘balance’ model and the
ideographic representation of eoquations as swtes of equilibrium  between
configurations of ‘boxes of apples’ and ‘loose apples’, the unknown being
conceptualised as the number of appies contained in a ‘box’ (see Task S(b), Table 1).
The formal equation-solving procedure to be developed was based on the application
of equivalent and inverse operations, and was intended to be directly modelled by,
and hence have its meaning derived from, the procedures used to handie the
equations as represented ideographically.

The investigation was conducted by interviewing a tota of six children, comprising
two each identified by the teacher as above average, Average. and below average in
mathematical attainment. The interview tasks (Table 1) were selected to give
information on the children's equation-solving methods, and their understanding of
equivalent and inverse operations and the conventions for representing mathematical
relationships, including the use of letters to represent unknown values. The children
were interviewed immediately before. during, immedintely after, and three months
after the tesching program in question.
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TABLE i EXAMPLES OF INTERVIEW TASKS
TASK ' INTERVIEWER'S QUESTIONS

Mathcmatical Represeatation
VT think of a number, ad 17, 1(a) Can you wrlie down the problem some way, to

and the answer s 31, help you work it out?
(b) How would you work it out?
2. atym6 2. What can you say sbout x and y? :
3. Equivalence i
— a) Say I choose these cards and place them like this (soe
8 10 +,6 = disgram).
C What cards could vow choose 1 make the senience
true? Why?
Could you chaose any others?
b) Eg. b) Let's use this sensence you have made (1046w 16),
10+ 6 = 16 Now suppose 1 remove the [](8] from my side.
v What have you got 10 do 0 your side %0 make the
Remove senieace true again? (Show by choosing and placing
10 - 16, the appropriate cards.)
¢) 10+6=16 €) Now suppose | sarl with your senience again, only
this time I'm going © multiply the whole of my Hde
by 3.
Ix(0+6) = |6 What huve you got 10 do to your skie 10 make the
senkence true agaln?
4. Inverse rations ber (]
o [T+73 ; = ] ) Here I've surted with & mystery number ([)). You
don't know whet number it is.  But 10 le.you I've

added 3 10 . Now it's your turn. What have you
801 10 put in the gap (7) If we want &0 gel beck 10 the
same mysicry number we sarted with a9 our answer?
(Choode and place appropeinte cards 1 show.)

Now I've siarted with a mysery number again, but
this time 1've multiplied it by 6. What should you
pul in the gop If we want 10 get back 10 the seme
mysiery number we stried wih a9 our snswer?

5. Solvlng {qu-dons Presenied:
8) Alg ally: ) What are we trylug 10 find here? Show me how you

i) 1B+ a= 47 would work it out.

i) n- 14 « 32 i) What does the letser (naming the fetwer In question)
iHdIp+5m= |4 mean? What docs *3p' (for example) moun?

V) 25 + 8 = 45 42

v) 74+ S5x= 20

b) Jx6 7 =[] b

-

=

b) In ideographic form, e.g. lli) Can you write an equation to match the diegram?
= (Note: this ideographic form was the form used in the
-D e Dmd) teaching program.)
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FINDINGS

Solutions of equations: After the teaching program, only one of the six students
had adopled the formal equation-solving procedure tauight. One other adopied a
procedure which was part-formal and pert-conatructive (the inverse operation being
used 0 ‘uito' addition/subtraction, but not multiplication which was handled
constructively as 7xS=20 (similarly for x$=21, which was consequently left
unanswered)). The remaining four Sudents used a constructive procedure for
equations of the form '18+a=47', but trial-and-error for ‘harder’ oquations such as
120+ 8wdx+2" of '7T4+5:=20°. Both these methods had been demonstrated by these
students prior to the teaching.

When presznted with sn idcographic represeatation. only the first two students
described above spontencously saw any connection odetween the sigebraic and
ideographic forms, and these were the only students able to supply & corvect
algebraic equation to match a given ideogruphic example. In both cases, however,
the ideographic version was solved using a ‘matching’ procedure (cf Collis, quoted in
Galvin & Bell, 1977), and only the ‘formal equation solver’ way sbie to match the
procedure used on the diagram by a corvect sequence of algebraic sistements. Of the
remaining students, one wa3 unable to proceed vath a solution, wnd the other three
used the ‘matching' procedure. Two of these latter students wrote algebraic forms
for the ideographic representation which used ‘b’ to represent ‘boxes’ and introduced
‘w'to represeat ‘apples’ thereby producing an equation containing iwo letters, which
the students could not solve. Thic oiher two students were unable to write any
algebraic representation. Al four of these students interpreted *3b' as ‘3 boxes’ in
this context, and also showed confusion in an ‘abstract algebra’ context between '3b'
s ‘3b's’ and ‘344, Prior to the teaching, however, three of these four had
Interpreted *3p° correctly as ‘3 times o', where b waa interpreted us a number.

Equivalence and inverse operations: In the case of addition or subtsmction, it is
extremely difficult to telt whether children maintain equivalence or apply inverse
opemtions on the grounds of logic or empiricism. In the case of multiplication,
however the distinction is clearer. Thus in the equivalence task Ix(10-+6)=167",
only two of the six students recognised from the beginning that the equivalence could
be maintained by likewise mullipiying the RHS by 3. The remaining four students
achieved equivalence by cvaluating the LHS of the expression, and then odding an
appropriate amount to the RHS. These respective behaviours were maintained
throughout and after the teaching of equation-solving. Similarly, where the inverse
operations task for multiplication was concerned (i.e. E]xb?=|:]). none of the
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siudents was initially able to solve this, excepl by assuming a particular value for the
unknown and then subinkiing an appropriate quantity in order to arrive back at the
given ‘unknown' value. During the teaching, the same two Students who had
recognised equivalence for the mltiplication task, came to recognise that division
necessarily undid the effect achieved by multiplying. The remainiag four students,
however, continued with their empirical sutwractive approach, except for one siudent
who came 1o recognise that subtraciion was not suitable, since the amount subtracted
would vary according to the value of the ‘urknown', but was unable to suggest any
alternative. The two siudents who attained recognition of both ‘equivalence’ and
‘inverse operations’ in these tasks were the same two students who were more
successful in leaming the equation-solving procedures taught,

Mathematical representation: The algebraic representation of equations presented
In ideographic form has already been discussed. Of additional interest was students’
written representations of the ‘I think of a number' task. On the initia} Interview,
none of the children interviewed wrote equations involving placeholders or letters,
Instead, each student wrote either a verbul or numerical expression. All the
numerical expressions were incorrect, although the students were able to proceed to a
correct solution. The common error was to ignore the bidirectional nature of the
equals sign, thus pioducing expressions which, although joined by an cquals sign,
were not equivalent, but rmther represented a procedural statement of how the
problem was soived, e.g. *1743=20410:=30+ | =:31" (f Vergnaud « al, quoted in
Kieran, 1981). By ihe third interview (immedintely after the teaching program),
three of the six students wrotc an cquation for this task, but interestingly used
placeholders rather than letters (the teaching unit had begun with placeholders, but
quickly moved to using letters). In working tinough the equation thus produced,
however, only one student (th¢ same one who used the formal equation-solving
procedure) maintained equivalence in each successive statement.

Other findings:  Alse of interest were the findings, supporting results obtained
elsewhere, that (a) in the exsmple 1+ y=6, 1 could not have the sume value as y (3
out of 6 children), and only integers formed the replacement sel (5 out of 6) (¢ g
Kiichmann, 1981; Booth, 1984); (b) expressions such as ‘2:4° and '432' were
regarded us equivalent (3 out of 6 students) (Booth, ibid: Kerslake, 1986): and ©)
students did not necessarily view the same letter as having the same value on two
different sides of the same equation (3 out of 6 students) (¢f Kieran, 1986).
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DISCUSSION

The picture emerging from this study is that students’ formal (in the sense of
logically rather than empirically necessary) recognition of what constitutes equivalent
or inverse Operations within a numerical context is not to be relied upon (see also
Filloy & Rojano, 1986). The students in this study who did not show a formal
recognition of equivalent and inverse operations in a numerical context did not show
such recognition in an algebraic context, nor did they leam a formal equation-soiving
procedure based upon these understandings. 1n addition, “concrete’ or ideographic
approaches, though designed to help children gain in understanding of the formal
procedures, may be unsuccessful in doing so if children never see the connection
between the two. In the present study, the only students who saw and were able to
make use of the relationship between the ideographic and algebraic representations
were the two ‘above average’ students who perhaps had least need of the ideographic
approach in the first place. In choosing a concrete or other represeniation of a
formal model or procedure, attention needs to be given to the precise nature of the
concept or procedure thereby instantiated. Where the particular representation used
evokes a concept or method which is not directly analogous to the formal model or
procedure &t issue, the use of that representation may in fact hinder development of
the formal procedure required. Furthermore, unless great care is taken, the use of
the concrete model may result in inappropriate ‘concrete’ interpretations of terms
and concepts being made, perhaps resulting in later error. This is not to say that
concrete models or alternative representations should not be used in teaching
mathematical procedures, but rather that carefut thought needs to be given to the
kind of model used, to the ways in which the model is related to the formal
procedure, and to the limitations and misleading notions that might be inherent in
the particular models adopted. Finally, attention is drawn yet again to students’ use
of informal methods and ‘alternative conventions’ conceming mathematical

representation, and to the fact that important relationships in mathematics which
students are assumed to know from arithmetic may either be not recognised by them
at all, or alternatively are apprehended only on an empirical (as opposed to formal)
basis, with consequent implications for their subsequent mathematical understanding
(Booth. in preparation).

Note 1: The work described in this paper was conducted as part of the ‘Children’s
Mathematical Frameworks' (CMF) Project funded by the ESRC and conducted
at Chelsea (now KQC) College from 1983 to 1985.

Note 2: The other teaching studies will be described in the report on the CMF project
(in preparation).
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MANIPULATING EQUIVALENCES IN THE MARKET AND IN HATHS
Terezinha Nunes Carraher & Analdcia Dias Schlieeann

Hastrado ee Psicologia
Unsversidade Federal de Pernasbuco - Recifa, Brazil

This study analyzes the cognitive eode) developed through the
use of two-plate waighing scales aeong earket vandors. Thirty
subjects were observed at work and then asked to solve
two sets of transfer tasks, one regarding valuees and the
other invoiving eore coeplex problees with scales. Results
suggest that this work experience prosotes the acquisition of
skillg which surpass the work raoutine. Aleost one third of
subjects were able to either learn vary Qquickly or
spontanecusly develap problee solving eathads which alloued
for the solution of problees with two~unknowun, whizh do not
sserge in their daily activity.

Studies of working intelligence have shown that aatheeatical

concepts and abilities can be developed at work gensrating efficient

problee salving behavior. However, the status of this knowledge is
unclear and eust be examined in detail. The cognitive sodel used by
the problee solver may be based upon the acquisition of specific wark
routines or an the understanding ot sathematical sodels.

This study analyzes the abilities underlying the use of two-plate

waighing scales. These traditional scales are usad in street earkets in

seall towns in the Northeast of Brazil, where the technology of digital
scales has not been introduced. Qne plate halds the weightj the other,
the eerchandise. Each scale has a set 0f weights with the values
appropriate for the eerchandise at hand. For instance, serchandise
sold in larger amounts, such as flour and corn, is weighad by coeparison
to weights of 50, 100, 200, 500, 1,000, 2,000, and 5,000 graes. 1t a
custoser asks for 350 graes, three weights, 50, 100, and 200 graes, are
placed on one plate and the serchandise in the othery this constitutas
an additive solution. An  alternative subtractive snlution can be
obtained by placing 500 graes on one plate and 150 grass on the other
plate with the serchandise. This situation affords practice wWith

nuaber operations and an underlying notion of equivalence. Different

cognitive skills eay develop as a result of such practice. On one
hand, subjects eay learn a sieple routine for weighing beceuse there are
few variations in practice. On the other hand, subjects may learn a
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aathematical model of equivalences, which can be transfered to other
situations. Two types of models could underly this knowledge. One
would ke a simple understanding of equivalences, which can be transfered
to other ameasures, such as litres, and different basic values. The
other would be a deeper understanding of equivalences and cancelations,
which can be applyed to the solution of equations, such as Filloy
& Roieno and Vergnaud have use in teaching situations, 1If this eora
powerful understanding is gained, market vendors would be able to either
solve problems of some coeplexity with unknowns an their own or learn

how to solve these probless through cancelation with relative ease.

KETHOD

This study was carried out in Gravata, a town of approximately
70,000 people in the Northeast of Brazil and a commercial center for
the surrounding area, Subjects were located in the street fair or
markets during working hours. Subjects were approached after the
exaeiners observed that they worked with two-plate scalaes. There were
no atteapts to select participantes by sex, age, or level of sckooling.

The study was carried out in two phases. First, subjects were
asked in the natural setting to weigh 400 or 900 grams of any product
they sold--a request which was often justified by the experimenters
because the quantitiws are unusual for certain ituas. All but one
vendor (who had just started working at the fair) succeeded in obtaining
the desired amount by subtraction. After buying one or more items from
the prospective subject, the experimenters introduced theaselves ag
researchers interested in daily mathematics and asked for permisgion to
present new problems. Three refusals were observed; 2B subjects (&
feeales and 22 males with levels of sthooling varying between illiterate
and secondary school) were willing to participate.

In the second, more formal part of the study, two transfer tasks
were administered. The Voluees Task was a simple transfer task, which
consisted of changing the variable in the probleas from weight to
volume and maintaing the overall structure of the probleas unchanged.
Subjects were asked to obtain f{ive desired total volumes (3, 6.5, 4, 9
and 9.5 litres) by using cups which allowed them to aeasure exactly
172, 1y, 2, 5 and 10 1litres, Two questions allowed for additive
solutions; the problees which required subtraction were parallel to

those with subtractive solutions when scales are used ti.e., 40, 400,

O
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90, 900, 95 and 950 graes are all obtained by subtraction). Because
there was no reason to expect differences in itea difficulty
amongst subtractive solutions, a fixed order of presentation was
used to allow for the analysis of practice effects on the task.

The Scales Task consisted of presenting the subjects with pictures
of two plate scales on which some weights and packages had been placed.
The subjects task was to figure out the weight of the indicated
peckages, Three types of problees were used: (1) two iteas with one
unkown on one plate {e.g., 2x ¢+ 800 ¢ = 1,000 g), the purpose of which
was to obtain the subject‘'s adaptation to the formal task situationg (2)
two iteas with two unkowns, one of which the subject did not nave to
solve for and could cencel out, obtaining a siaplified probles which
ccuid be worked out as a one-unkown probles (@ugey x ¢ y ¢ 900 g = y ¢
1,000 g)3 and (3} three iteas with unkowns on both sides of the equation
{e.gsy Ix 4 250 g = 2x + %500 g), the purpose of which wes to test for
the development of a more general eodel used in tha manipulation of

equivalences. The adaptation iteas were always presented first, The
other items wera randoaly organizsd into @ list, which was presented to
alternated subjects in direct (A ta E) or inverse ({E to A) order to
control for order effects. When subjects had already solved or failed
on the third and fourth probleas, the sxperimanters desonstrated the use
of a general sethod {termed below 'manipulating equivalences’) in order
to test how easily it would be learned by those who did not

spontaneously use it. Figura 1 presents a saeple problea,

)
|

Figure |

Order of foreal tasks was varied across subjects, Goee subjects
answered both tasks on the saee day. Others were tested on different

days at most one week apart. Three subjects were not located faor the

O
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Scale Task after having solved the Volumes Task; two others were not

located for the Voluees Task after having solved the Brales Task.
RESULTS AND DISCUSSION

In the Volumes Task, all addition probleas were solved correctly
by all subjects. However, observations indicate that a single gubject
had probably learned from his experience with scales simply a work
routine which- allowed him to obtain the desired weights on the scalej
this subject solvad the additive probless but did not solve any of the
subtraction probless. Because order of presentation of probless was
tixed, different results were obtained ¢or 4, 9 and 9.5 litres. 0¢
the total of 26 subjects, the 4litres guestion yielded 7.B% wrong
answers, 446.1 immediate correct responses and 44.1 correct responses
atter the experimenters either suggested the analogy with weighing 400 g
or that the subject could start with the 5 litres cup. The two other
guestions, 9 and 9.5 litres showed clear effects of practice and
adaptation to the task. For the 9 litras question, 68.5% of the
subjects gava iemediate correct responses, 7.7 % only produced a
correct response after the suggestion of analogy to the previous itea
and 3.8% did not solve the problea. The 9.5 litres guestion was
correctly solved {amediately by 946.4% subjects. While the imsediate
correct responses in this task could be quite independent of practice
With two-plate scales, the fact that a suggestion to solve the 4 litres
probles by analogy to weighing 400 g was helpful, can he interpreted as
indicatiaon of transfer from one task to the other. )

The Scales Task showed an easy adaptation of subjects to the first
set of items: 100% solved the first jtem correctly and 96% solved both
items correctly. This result can be taken at indicstive that subjects
recognized the formal Scales Task as sieilar to their daily occupation,
Questions in which packages of unkown value appeared on both sides of
the scale wvaried 1in difficulty according to the need to solve for both
unkowns (type 3 items) or not (typs 2), with the latter type being
slightly easier (72.9% of correct answers against 65.3%),

Three basic approsches to these questions could be 1dentified, all
of which can be seen as transfer from the working situation but refer to
transfering different sorts of conceptions. A higher level conception,

which we will term manipulation of equivalences, consisted of treating

the situation as one in which equivalences are being manigulated, i1,e.,

subjects were able to understand spontaneously or after suggestion that
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the equivalences would be preserved if packages with equal even though
unknown weights were reeoved froe both sides of the scale. This
strategy was used at least in one problee by B subjects (4 spontaneously
and & after suggestion froe the exaeiner) and led to a quick solution
of any problee. Subjects who spontanecusly worked by manipulating
equivalences did so consistently on afl itesas; those who used the esthad
after the experisenters’ deeonstraticn tended to generalize it to all
following problems. A second type of conception consisted of treating
the situation as one in which eguivalences eust be eaintained but no
eanipulations weare perforeed. These subjects atteepted to obtain
solution by testing several hypothesis through substitution of the
unkown by hypothetical values--a strategy that will be teraed here
hypotheses testing. This eethod led to solution on several probless
but was slower than the previous one because it involved trial and
error. Eleven subjects used this eethod at 1least once. The  third
approach involved atteepts to work out the total weights on each side
of the scale fitting these values to usual purchases, such as | or 1/2
kilo. This strategy will be referred to a8 fitting values to a total,

and often involved a difficulty in accepting the task deeand of making
all au's egual. Although this eethod is inappropriate for solving
probless in this particular task, it is consistent with deeands of the
work experisnce, in which a custoeer either asks for a total weight or
§inds goods which must be weighedj when the weight is only
approxieately eeasurable, vendars will frequently offer soee extra
amount 'in order to coeplete a kilo', for exaeple. This eethod was used
at least once by 10 subjacts. Subjects resorting to the last tuo
methods showed 1sss consistency than those who resorted to the
eanipulation of equivalencesy their choice of strategy was strongly
affected by the values in the task. Hypothesis testing was wmore
fraquently used in those prabless which contained two unknowns but the
subject only had to solve for one af thee, Fitting values to a total,
on the other hand, was a sore common eethod when thc values in the
problee involved a half and a quarter kilo and the total was actually
one kilo.

The differences in efficiency between strategies were rather clear
despite the possibility of correct solutions through eethods
{nappropriate for the task. When the wanipulation of equivalences was
used, no @errors were observed. Other methods resulted in 254 of

incorrect responses.
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Performance in the Scales Task improved with higher levels of

schooling. However, even iiliterate subjects were able to learn the

aethod of manipulating equivalences,
CONCLUSIONS

The wain significant findings are summarizad below, First, it
seens unlikely that subjects working with scales learn only a routine
for weighing but appear to learn at lmast a sisple equivalence of
aeasures. While it is not possible to attribute success in the Voluaes
Task to a transfer from work experience, a siaple reainder of the work
routine was sufficient to improve performance in this task. Second,
transfarence from the practical setting to a hypothetical one with
unknowns on only one side of the scale was observed in all cases. Third,
transference to situations with two unknowns is observed less frequantly
and 18 not always cbtained by means which are equivalent to the
sathematical model usually taught 1in school {or solving algebra
problems; other methods which avoid the difficulties of two unknowns
eaerged in this setting. Finally, it must be noted that while this work
experience cannot guarantee the understanding of the manipulation of
squivalences in this type of problem, the parcentage that learns to do
s0, either spontanesously or after one or two teaching trials, aay be

considered rathar remarkable.
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MODELLING AND THE TEACHING OF ALGEBRA
Eugenio Filloy Y.
Centro de Investigacion y de Estudios Avanzados del |.P.N., México

We present some results of recent Mexican works in the field of Algebra
teaching. AN analysis 1s made within the theoretical tramework of the expe:
rimentation design, which ts essentially that of the Pragmatics of Algebraic
Language and the Psychology of Information Processing, combined with the
acquisitions from Semiotics in the production of codes. The resulting
analyses are included as well as analyses of propositions from the beginning of
the century.

The study of theoretical problems presented by Algebra Teaching has been gather-
ing force in recent years. The National Council of Teachers of Mathematics of the
U.S.A in recognition of this organized, last March, a conference dedicated to analysing
the foundations on which theoretical research in this field should be built. The
Mexican works mentioned in the bibliography are presented and discussed here
indicating the continuous work that has already covered a span of more than five years.
In constrast with what happened then with studies in other parts of the world, as
much in the data-processing methodology as in the theoretical aspects, these Mexican
studies started out with the intention of moving experimental research closer to
teaching (planned and executed in the Mexican school system in the medium level
schools). These experiments start from the observation of the student’s difficulties in
learning, given the strategies present in the traditional and innovatory teaching models,
used in today’s secondary schools.

In a world context, theoretical analysis has been enriched by the problems
concentrating on the use of knowledge derived from research on Artificial Intelligence.
Also, related more to the psychological processes of the construction of mathematical
language signs in general, another group have actively participated with their theore-
tical works. In Mexico, in attempting establishment of particular mechanism of
algebraic language there has arisen the need for a theoricai framework that lies hatf
way between the Pragmatics of normal language, the theoretical acquisitions of
Semiotics } see 15] and the theory of information and codification. Thus concepts
such as semantics syntax, context and reading at one language level etc. have been
combined with concepts deriving from the psychalogy of information processing
such as memory, semantics, short term memory, inhibitory mechanisms process
unravelling mechanisms, analysis mechanisms, permanency in a semantic field etc.
The empirical evidence now accummulated permits us to foresee that an interpre.
tation of the learning processes, practice and communication with the algebraic
language {teaching strategies in particular) demands all of these theoretical instru
ments and that now is the most propitious moment for theoretical reflection on
new problems that would put these (theoretical models) to the test. This article
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Concentrates on the description of some experimental data which in the light of an
analysis of recently-mentioned concepts, reflect a previously unsuspected depth of inter-
dependence.

CONCRETE MODELS VERSUS DRILL AND PRACTICE.

At the beginning of the twenties, In |16], Thorndike ainfbd at including in his work
all that seemed pertinent to him for the advance of Algebra teaching in his time.
Ttus monumental work still provides an essential programme for any theoretical and
experimental approach, setting aside perhaps some emphasis and preoccupations
singular to this theoretical perspective. What 1s stilt very relevant is his central motiva
tion which had already appeared n an earlier article | 17 }, specibically 1n the last
paragraph: ' Algebraic computation, as we recognise it today is, without doubt,
an intellectual skill. ft 1s not such an indication of ntellect = problem-solving, in
part because it demands a lower-grade of abstraction, selection and original think

ing, and in part aiso because it only includes numbers and non-numbers and words.
It is nevertheless very much superior what it is claimed to be - a mechanical routine
that can be learnt and operated without the use of thought

In the following sixty something years the research emphasis has varied enormously
until about the middle of the century when priority was given not to what Thorndike
catled problem- solving, but to the structural components of study material: Algebra
{in fact all mathematics). We have the case of the medium level French education
study programmes whete right up to this date traditional teaching situations do not
appear in the subject called Algebra, since Algebra 1s considered a continuation of
Anthmetic| see 2 |. As a reaction to this there was a change of direction in the seven
ties towards the use of teaching models based on situations similar to, but more concre-
te than, those proposed by Thorndike, mechanizing the handling of algebraic expres
sions and achieving a speedy use of the syntactic rules.

In {71 there can be found examples of situations of concrete modelling which
give the following results:

Modelling has two fundarental components: one, that of translation, through
which 1t applies meanings in a more concrete context to the new objects and oper
ations being introduced, the same as appear in more abtstract situations. That is
through traslation these objects and operations are related to elements of a ‘‘concrete”’
situation. This i a state of affairs that represents, at the same time, a condition of
circumstances in the most abstract situation {in the case of a geometric model for
example, the equality between areas or magnitudes corresponds to an equality between
algebraic expressions) and from what we already know at the most ""concrete’ level
about the solution of such situations, operations are introduced that, although they
are carried out in the '‘concrete ', also attempt to function on the corsesponding
objects at the most abstract level. It is thus necessary to have a transtation of move-
ment from one context to another to make feasible the identification of each oper-
tion of the most abstract level with the corresponding one in the 'concrete’’ model.
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A second component of modelling 1s the separation of the new objects and opera-
tions with the most ‘‘concrete’ meaning from that which they were introduced. That
is, the modelling attermpts to detach itself from the semantics of the ‘concrete” model.

since what s requirred is not to solve a situation already known to be solvable, but
10 find a means of solving more abstract situations through more abtstract operations.
This second component 1s a motor principle that orientates the function of the model
tewards the construction of an extra- model syntax.

The study shows that the predominance of the first of these components of the
model {traslation) can weaken or inhibit the development of the second. This Is the
case with subjects that achieve a good handling of the “concrete’” model, but that,
due to this, also develop a tendency to stay and progress within this context. This
anchoring to the model works against the other component that of abstraction of
the operations to a syntactic level, which presupposes a breaking with the semantics
of the ‘' concrete’ model.

The afore-mentioned obstructions constitute a kind of essential insufficiency n
the sense that the model {left to the spontaneous development on the child s part)
on being strengthened in only one of its components, tends to mde precisely what
1s mtended to be taught, that they are new concepts and operations.

This kind of dialectic bewteen the processes corresponding to the two model
components should be taken into account in teaching, which should try to develop
harmoniously the two kinds of processes, so that one does not obstruct the other, and
viceversa. In fact, from the case analysis performed here, it is clear that this s a teach
ing task, given that this second aspect of the model, that of breaking with former 1deas
and operations where the introduction of new skills is encouraged 1s a process that
consists of the negation of parts of the model’s semantics. These partial negations tike
place during the transference of the use of the model, from one situation of a problem
to another but, when this generalization in the model’s use remains at the expensc of
the spontaneous development on the part of the student, the partial negations can

occur in essential parts of this. It is because of this that it becomes essential to intervene
with instruction in the development of these processes of detachment and negation of
the model, in order to direct the student towards the instruction of the new notions.

SYNTACTIC MOD:LS

The 1dea of the concrete teaching model can he extended to the strategies proposed
by Thorndike that will here be called syntactic models in contrast with those of
that we shall call semantic, since here they emphasize working with a semantic empha-
sis in all the signs and operations involved. In the syntactic model, in contrast, the
emphasis is placed on the general rule used to construct the habits leading to alge
graic operations.

With respect to these models, the empirical evidence (see 12 ) ndicates that apart
from generating private semantics {of the subject) that confer meaning on the terms
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proposed by the general rule and to the algebraic operations involved (they could be
called spontaneous connections to use Tharndike ternunolagy) there also appears
the phenomenon of reading of the proposed situations, through senses that have been
previously conferred on the rules that have to unfold in order ta perform the syntactic
task. For example, in 3 there appears the case of a subject that, on first confronting
equations of the type Ax B . C(A, B, C ) 0), always give B a positive value whife
giving A the negative value, guided by the sense derived from the previous practices
that he had carried out with the equations of the type Ax+ B - C

In this respect the emphasis placed by Thorndike, not only on drill but also on its
preoccupation with practice and the consequences that this has on the times
ot training that the learning experiences impose, has a new meaning, faced with the
need to rectify the spontaneous readings, generated here, not by semantics but by
syntax. This is a syntactic context that directs the (‘natural’} erroneous reading,
due to the anticipatory mechanisms ot the subject, this theoretical unit 1s indispensable
also in the Pragmatics of Normal Language.

PROBLEM SOLVING AND SYNTAX

In 19| and [18] there s empirical evidence 10 show that the analytical pracess
in a typical preblematical situation (expressed in the normal language) produces
reading  phenornena of the situatton which nhitut the developnient of equatton
solving algorhythms that moments before were performed easily and correctly. Thus,
in the presence of a written expression in the norrnal algebraic language of a ficst
grade equation, the subject Is incapable of decoding as such and because of thus,
he is unable to use brilliant operating skills which moments before he had exhibited
with the same equation. In the works mentioned at the beginning of this paragraph it
15 possible to find more examples illustrating this phenomenon. Mere illustrative than
these however, there occur examples of problematic situations (in the parts where
translation of the normal language to algebraic language 1s made) that reveal the
existance of a tension between the interpretation of the algebraic expression, given by
a reading that comes from the context of the algebraic language 1tself, and the use of
dnll in the operations,inhibiting the necessary reading given by the semantic interpreta
tion which confers the concrete situatton on the verbal problem. A syntactic reading
inhibits the reading of the concrete context where the problem s situated. [t does pot
allow the aplication to this algebraic expression of an interpretation that would permit
It to continue with the correct solution strategy that would pravide the solution and
including as one of its tactics this part of the translation.

It 1s at this moment of the discussion that some of Thorndike's theoretical pre-
occupations and their tmplication in teaching come into their own since the need
to automatize hecomes urgent, not only some algebraic operations arising from the
decoding of a concrete problematic situation {problems of age, mixtures, atloys, money,
work, etc.} neither the sense of the necessary algorhythm nor the semantic interpre-
tation (in terms of the contexts of these algebraic operations were practised) nor the
anticipatory mechanisms (espectally the inhibitory ones) should obstruct the unfol-
ding of a solution strategy. Besides, it is essential that, when this latter 1s placed in the
short term memory, the time that it will feasibly remain there should not negate
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the possibility of considering alt the necessary intermediary tactics for the proposed
solution. This should be the case provided that the concatenation of all the tactcs,
without making all the steps essential for the obtaining of these partial goals, can be
carried out in this part of the memory (the short term) which it would be ditficult
to maintain alert for such a lenght of time. One could say that the skill of storing
important quantities of information, in order to be able to move out from this mernory
space to bring in new and important information, is not easily found among average
students. 1t demands large intellectual resources not pronartioned vy normal teaching.
Because of this, drill, resulting from intense practise, allows the optimum use of
algebraic expressions and the normal operations in algebraic language and this breaks
with the anticipatory mechanisms inhibiting the unfolding of necessary solution
strategies.
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COMMON DIFFICULTIES IN THE LFARNING OF ALGEBRA AMONG CHILDREN
DISPLAYING LOW AND MEDIUM PRE-ALGEBRAIC PROFICIENCY LEVELS
{A clinical study with children 12-13 years old}.

Aurora Gallardo and Teresa Rojano
Centro de Investigacion y de Estudios Avanzados del 1.P.N., México.

Here we study the pre-algebraic behaviour and the phenomenon of transition from
arithmetical thinking to algebraic, in children of low academic achievement, those
belonging to the low level and some from the middle level. This student population
offers an smplified version of the difficulties confronted by their companions and, in
an escential way, questions the process of educational evaluation, indicating that the
classification by fevels - high, middie and low- depends on the objective of the study
and not the subject itself. Through an analysis of video-taped interviews, we show
important skills and resources, acquired by these students, that are not reflected in the
didactic data. We aiso see areas of difficulty in aigebra-laarning that contributes to ex-
plain low academnic achievement, and to reveal intrinsic problems in the study matter
an its teaching.

ANTECEDENTS AND PRESENTATION OF THE STUDY

This work is part of a general project on the “Evolution of Symbolization in u School
Population of 1218 years of age . developed in the Seccion de Matemdtica Educativa
del CINVESTAV and the Centro Educativo Hermanos Revueltas in Mexico City, since
1982. The methodology employed in the research project is developed in two directions:
1.. That of the field of historical devetopment of mathematical ideas. 2.- That of the field
of educational research.  |n this latter we fook at the research topic ‘Operationof the Un:
known ‘1] where a transversal study is made of a population of students of 12 to 13 years
of age in a controlled teaching system. Previously the antecedents of the student popula
tion, in terms of various pre-algebra sub-themes, were determined. A resulting stratifica
tion for each sub-theme was developed and this resulted in three levels -high, middle and
low. It was discovered that the subjects, who were suited for the study of the phenomena
of transition from arithmetical to algebraic thought, were those belonging to the high level.
As a result the clinical study described in the research consists fundamentally of an analysis
of interviews of this level. The present work, however, studies the video-taped interviews
of children of low academic achievement. Their relevance can be seen from two points of
view: First, because they give an ‘amplificd version’ of the difficulties confronted by the
rest of the students (6}. and secondly, the process of educational evaluation is questioned
through the illustration that this classification by levels depends on the objective of the
study and not the subject itself. The clinical method illustrates the important skills and re-
sources that these students posses, not visible in didactic data. As a counterpart, it also
indicates areas of difficulties in the learning of algebra which partially explain the low
academic achievement in these students.  The areas, detected by the clinical study are as
follows: 1).- Operations, 2).- The nature of numbers. 3).- Primitive methods, the strategy
of trial and error. 4).- The interaction between the semantics and the syntax of elemental
algebra, 5).- The didactic cut in the study of linear equations.

The analysis presented in these areas is restricted to an attempt to explain the data
observed by the clinicai method. It does not attempt to be a study in depth, because of
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the complex problems which each one of these contains at a theoretical level. The im-
portant thing to note is that the students’ difficulties uncover intrinsic problems contained
in the material under study and in its teaching in this case in algebra. Nevertheless,
although it is not considered in this work, it is worth indicating the importance of ques-
tioning the following: which factors, apart from those intrinsic to the subject matter, have
a determining influence on whether a student has a low learning capacity or not. We can
not go into this problem here because of the limitations imposed by the methodology
applied.

THE CLINICAL INTERVIEW

The basic format of the interviews is of 5 series: The series € of Equations -of the
form x + A =8B, Ax= B, A x(xt B}=C,and (xtA)x B=C, where A, B, and C are
particular whole numbers distinct fromzero. The series C, Cancellation: x t A =B+ A,

A The series | (Operation of the
Unknown) that present items such as Ax + B =Cx and Axt B=Cx +D. Finally the
series Solution and Invention of Problems, that takes a further look at the equations pre-
sented in the previous series.

In the majority of high level cases we introduce a phase of instruction in the Series |
(which contains equations for which there has been no class teaching), after having
observed the spontaneous replies to the first equations of this series.  This instruction did

not occur with the children from the low level but in some cases with the middle level
child.

AREAS OF DIFFICULTY ANALYSED (Description and Observations)

Next we present the description of the areas in question, with excmples of observed
difficulties with items taken from clinical interviews.

1. OPERATIONS

1.1 The Duality of the Operation, Letters do not constitute a very intuitive nota-
tion for the symbolic values since they do not appear at first instance to refer to numbers.
Although the unknowns are frequently used in arithmetic through ‘empty spaces’, numeri-
cal sentences such as 3 + (0 = 7, this concept is not generalized in a natural form to one
with symbolic value.  The 'empty spaces’ are not “worked” in the equations nor “‘defor-
med’ by operations that alter their structure, but they have an inherent connotation of
“being filled". Since the “'emply space’ is not associated clearly with a letter, the
students do not notice. in principle, that the variables can be exemplified with numbers.
Thus, the students of this study, when faced with 2x normaly answer, “‘You cannot muf.
tiply by x because you don’t know what x is”.  In fact, the arithmetical idea of ‘perform-
ing an operation” such as multiplication is transformed into “how to wrile the result”
On the other hand, there is a tendency to reject an algebraic expression as a result, when
thesigns +, , x , + 8/, ()? appear in the equations the student immediately works the
equation. Here lies the duality of the operation: the permanence of the action when
faced with an order of execution.
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1.2 The Reading of the Operation. Generally arithmetical operations are perform-
ed vertically. [n Algebra, horizontal reazing of the operation on the equations predomina-
tes | 7], These directions in readings, combined with the use of plus and minus considered
at the one time binary and unitary, lead to problems. For example, the item

x + 1 568 = 392 both readings were present.  To solve the previous equation, one

student used a calculator and verbalized I tuke ! 568 away from 392, The result is

1 176". He read the expression horizontally. Nevertheless, when the interviewer asked
him to do the operation on paper he turned to incosrect vertical writing ‘156%
824

In the case of the symboli¢ signs of the values, he cannot be sure whether the sign is
explicit or if it is “contained’ in the symbolic value.  Thus in the item x + 1 6 68 = 392
another interviewe states “the equation cannot be solved, since x is always positive.  So
that » could be negative it should be written as -x*.  On the other hand, there is also some

confusion between the various operations, interpreting addition as substraction, substrac
tion as division, and taking the square root as making to a power and division at the same
time. For example, in the item x +/13 = A3 the student asks if \) 13 can be a de-

cimal. He is answered in the affirmative. He replies *‘In that case, the answer is 6.5
because 13 divided by 2 is 6.5". When this same student is presented with the equaticn
x - V3 =0 the following occurs:

Student: It is 3, no it &5 9" Interviewer: "Why?"  Student: “Take 9 away from
9. The /3 is 9"

1.3 Inversion of Operations. We can frequently observe that the idea of inverse
operation is not consolidated in the student in the transition from arithmetic to algebra
On occasion this leads to the inversion of primitive rules which takes him to the correct so-
lution. These rules function in extra-school situations as in the case of the “rcverse™ rule.
Thus in the item 13x = 39 the interviewee states that, in order to find the value of X'’ one
has to divide 13 by 39", He obtains the value 0.333 and confirms that it is wrong. When
the interviewer asks him “What can have happened?”” He answers “It has to be done in
reverse, we have to divide 39 by [3".  One can note that this procedure is applied to
various daily situations and does not necessarily correspond to the inversion of operations.

1.4 The Nature of Equality. |n arithmetic, the equal sign is used fundamentally to
relate a problem to its numerical answer, in algebra the equal sign has a dual character; as
an operator {assymetric character of equality} and as anequivalence (symmetric character of
equality). When the idea of operator and not of equivalence is emphasized in the solution
of equations mistakes are made. Thus in the case interviews, the “Quast-equality * |3}
scheme is present.  The student constructs the rule it is not importan! where the opera
tions are performed, as long as they are performed once”. Thus, 3x + 154 = 45 iscon-
sidered equal to 3x =475 +154”since it is the same if you add before or after the equals
sign”’. The preoccupation with operating immediately leads them to ignore the equals
sign.

In the series of Cancellation there are present different interpretation of equality ||
at this level:  1).- Arithmetic Equality: x + A = 8 + A, Thatis, the student, before
giving any reply, ‘‘reads” the terms on the right hand side of the equation, as one single
number {"close the operation’).  2).- Equality of the twosides x + A= 8_! A, Consider
each side as a unit. There unfolds a “visual reading’’ where, at times, the operation involv
ed in the expression is unknown, Thus, inx + 5 = 5+ 2, the student replies: x is 2
because they are equivalent.
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2. THE NATURE OF NUMBERS.

2.1 _Positive Whole Numbers. In the field of nositive whole numbers, the zero and
one stand out as special numbers | 3] . These special numbers appears in the context of
the rule of identities, thatis A+ 1 = A and A + 0 =A, Here, we should point out
that in 1. x =x they generally interpret 1x as x but do not mention that x is equal to 1.x.
On the other hand, when the solution of the equation is zero, there are students that do
not accept this solution as valid because they see the zero as “the absence of value' and
continue to look for another number that might satisfy the equation. Finally, the majori-
ty of cases interviewed show a preference for the positive whole numbers to the point that

| they force the value of the x so that the equation does not contain fractionary expressions.

2.2. Negative Whole Numbers.  As far as their teaching is concerned there exists
an assymetry -between positive numbers and negatives.  The positive numbers are more
concrete in the sense of their relation with measuring activities, and they can therefore be
operated. The negative numbers are secondary, introduced as a resuit of the operations
{7]1. In the cases analysed in this work, it is shown through the interviews how difficult it
is for the student to understand and accept negatives. On the other hand, we have
already mentioned the problem of signs, unitary and binary, in the Area of Operations, and
also the lack of link between adding and substracting as inverse operations. For example:
{I: Interviewer P: pupil). {: "How do you solve: x + 1568 =392?" P: "By taking
392 from 1568, 1176 (note that he substracts the greater from the lesser number)’”. {: “Is
the answer correct?”’. P: “Yes”. |. "How did you test it?’ P: ''| added 392 (quasi-

equality scheme)’. |: “How do you prove it?” P: "By adding 392, but it does not work
out because this s greater than this”.

2.3 The Polysemy of the Unknown. it is shown in the following way: in an

equation, different  readings of the same x are made.  That is, 1t is interpreted as an un-
known or generalized number (that 1t has more than one value). Thus, in the items
x + %— =6t —:—and x +5 = x + x of the Cancellation Series, the typical reply is ‘ This
x’?)‘( + E=64+ ’i) is 6 and these"((x'r’i =6t % } can be any number’’.
This x {x +5 = x +x) is 5 and themx +x) can be any value. In the itern
2x + 8 = x + B many verbalize “This x/(.Z} + 8 =x-+ 8) is 4 and this X (2x + 8= x +8) is
8”.  They state openly that the x in 2x must be half of the x in the second side so that the
value is the same on both sides. What the student tries for is that “the quantity is conserv
ed” at all costs. Note that they still have not consolidated the idea of conditioned
equality, that of equation.

3. PRIMITIVE METHODS, THE STRATEGY OF TRIAL AND ERROR.

The majority of the students that, for various reasons, do not accept academic know
ledge immediately, attack the first algebraic problems with the same methods that have
been successful in arithmetic and that are famihiar to them | & ].

Here we present two case interviews: The first resorts to the strategy of trial and
error. The second uses a systematized expioration. They are asked to solve the item

O
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6x =37 436. The first student resorts to the calculator for his computations. He tries the
nurabers, 175, 365, 465, 563, 633. The interviewer then presents him with the previous
equation as 6 x [J = 37636, At this moment he tries 630 and 620. Note that the values
found by the student when muitiplying by 6 lead to: 6x 1756= 1060; 6 x 365 = 2190;

6 x 465 =2790; 6 x 563 =3378; 6 x 633 =3798; 6 x 630 =3780; 6 x 620 =3720.

It is observed that these numbers do not reach the required order of magnitude.
Nevertheless, his computation becomes systematic from 633 on in that the first two num-
bers of the total on the right hand side, that is 37, tally with the first two numbers of the
total on the right hand side of the given equation. The second student sets about solving
the item 6x = 37 436 without using a calculator P: “6 by & 100 this number couid be 6
right?"’. 1:"Let'ssee. Tryit".

The student begins to divide on the paper. The interviewer suggests using the calcu-
lator and the student arrives at the correct result, 6 239. Note that, in this case, the
student suddenly grasps the order of magnitudes of the number he is looking for.

4, SEMANTICS AND SYNTAX OF ELEMENTAL ALGEBRA

In the case studies, the semantic interaction semantics-syntax is analyzed with respect
to the invention of a problem from a given equation.

Given the order, “Invent which problem is solved, for example, with the equation
x + 4 = 28", the student first finds the solution. The most pressing need is to under-
stand the meaning of the sign.  That is, to find ihe unknown before becoming involved
in the construction of the problem. (Language obstruction reflex at a purely syntactic {
level). On the other hand, we mentioned previously, in the area of Operations, the diffi-
culty of conceiving the algebraic equation as a condition of equality. This occurs on in
venting a problem to solve the equation, the student ommits the question, that 15 the
thing that converts the description of a situation to a problem.

Sometimes, the problem proposed by the students is foreign to the equation, for
example, in the following case: {: “"Can you invent a problem solved by this equation
4(x + 11) =527?". P: A problem or just an Operation?”’ 1: "A problem with marbles,

for example...”. P: ‘A child had 5 marbles and won 2 and some were lost, but we don t
know how many..."”".

Note that when the student asks if a problem or only an operation is wanted, it can
be that he is trying to solve the equation. On the suggestion of the marbles, that is, a
semantic situation, he abandons the previous syntax (4(x +1 1)=52) and concentrates on
posing “another probiem’. Observe that the new data is foreing to the initial equation.

5. THE DIDACTIC CUT IN THE STUDY OF LINEAR EQUATIONS.,

The work “"Operation of the Unknown" |4l corroborates the existence and location
of a didactic cut in the evolutionary line from arithmetic to algebra. At a theoretical
level this cut arises when there is a need to operate the unknown in the soiution of linear
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equations, with an occurrence of x on both sides of the equation. In the clinical study,
the didactic cut is perceived only by the children at the high level. One way of rioting this is
their verbat manifestation when they are faced with new equations that they cannot solve.
Some students even imagine the existence of a school-method of attack for these new
equations. on the other hand, the students of low academic achievement do not see any
difference between arithmetical equations Ax + B = C and the non-arithmetical
equations mentioned here. Fundamentally this is because they do not realise the change
of concept from arithmetic to algebra, remaining still in a purely arithmetic field They
even try to look for mechanisms that allow them to interpret new equations with two
occurrences of the unknown as equations where x appears only once. For example, in
the item 5x = 2x + 3 a student answers: “ 5x is equal to 2by 1, 2 plus 3is 5. Thus, in
performing actions on one side only of the equation as in summing 2x -+ 3 once the x has
a value assigned to it, he reduces the two occurrences of the unknown to one. It is im-
portant here to indicate that the explicit non-perception of a didactic cut is not a denial.
In this work, the existence of the areas of difficulty here mentioned, indicates that the
cut will not flourish at the low level. it will be necessary to solve these difficulties in pre-
algebra before studying the first algebraic equations. This information could not be
cbtained from the high level children where they have automatized the actions that make
evident the explanations of the whys and wherefores of the pre-atgebraic situations. That
is, children with a great academic achievernent do not display the need to make explicit
the situation procedures which are completely rutinary to them.

CONCLUSIONS

The results of this study display irnportant skills in the students of low academic
achievement. Some of these are 1).- Systematized trial and error exploration. 2) - The
tendency to generalization and simplification in the methods of equation solution.
3).- Extra-schoo! resources such as the ‘“‘reverse’’ rule and the ‘quasi-equality scheme.”
4).- The use of various languages in the invention and solution of problems. On the other
hand, the difficulties encountered by the students indicate some key points to be const-
dered in algebra teaching. Thus, we shouid consider such questions as i) the duality of
the operations, ii) the symmetry or anti-symmetry of equality, iii) the non-indentification
between one operation and its inverse, iv) the existence of special numbers, v} the extreme
difficulty of the negatives.
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THE MYTH ABOUT BINARY REPRESENTATION IN ALGEBRA
David Kirshuer

University of British Columbia

The parse of algebraic expressions is often indicated explicly by the use
of parentheses (eg. (x + 1)!) or else as artifacts of the positional features
of notation (c.g. x2y is interpreted as x(2y))‘ In cases where such explicit
indicators are absenl, syntax defaults v a conventional hierarchy of
operations (e.g. 3x' is interpreted as 3(x!)). In usual treatments of syntax,
expressions are assigned a binary parse. For example, x + y + 1z is
assigned the pars¢e (x + y) + 2z Because of the associativity of addition,
however, we may legitimately ask if the psychological representation is not
x + (y + 1), or indeed if x + y + 2z is assigned a parse at all
This paper presents and supports the hypothesis that the syntactic rule
which underlies the menta) representations for competent symbol users does
not provide for a binary parse. Since standard formal mathematical models
treat operations as binary, this amounts to an assault upon an implicit but
i orvasive  assumption that forma! mathematical theories explain or underlie
the rules by which algebraic expressions are manipulated.

Before presenting and evaluating a detailed and somewhat technical hypothesis about
the psychological representation of  algebraic  operations (addition,  subtraction,
multiplication, eic) it is useful to consider briefly the place (or rather lack of place)
of such a hypothesic within the context of current rescarch in the psychology of
algebra.  This report is atypical in that it is primarily about the fluent or competent
algebraist  The vast majority of studies which bave been undeniaken to date are
about the novice algebraist; the mistakes which he or she makes or the processes by
which new algebraic knowledge is acquired. Few reports (Carry, Lewis & Bernard,
1980, being a notable exception) attempt to specify a detailed account of algebraic
competence before plunging into the turbulent waters of knowledge acquisition or
knowledge deviation.
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AL least part of the inauienuon 1o compelent performance can be altnbuled to an
implicit belief that mathematical theory (in some sense) underlies of generates  Of
cxplains knowldege used 1o manipulate algebraic expressions. This belief s evidenced.
for ecxample, in the distinction which Brown, Burion, Miller et a (1975) make beiween
the "abstract logical strucwre of the [algebraic) knowledge” and the "1corganized.
learper oriented  structuring of how he is to use the knowledge for solving algebra
problems” p. 84 Apparenty they believe that somec abstract structure (presumably a
formal mathematical model) underlies the psychological representations, however, they do
not provide a detailed account of the presumed connecuon. Whatever its direct value
for psychological or cducational theory, the present paper also takes aim at the
presumed mathematical- theory/psychological-theory connection.

The present  hypothesis  resides within a linguistic theory of algebraic  competence
(Kirshner, 1987). It is necessary to outline that theory briefly (scc Kirshner, 1983, for
a more detailed outline) and to describe some pans of it in detail In the linguistic
theory, a distincuon is made between the surface form (SF) of ordinary algebraic
notation and a morc abstract deep form (DF) in which the operations and _parse of
cach expression arc cxplicily displayed. For cxample the SF, 5(1 - x + r)zy. would
be represented in DF as SMI[[ISArJE[2My]] where "M", "g"  "A", and "E"

abbreviate operations, and brackets display the parse in the usual way.

DF's and SF’s arc central psychological construcls of the theory. It is postulated that

in manipulating an algebraic expression the SF is decoded into ils associated DF. It

is the DF to which transformational rules are applied.  Finally, the transformed DF is
encoded back into SF. As an example, (3x) - ¥y = (3 = yX3x + ¥) is
accounted for as follows. The initia) cxpression (3x)' - ¥ is translated to its DF,
([IMX)E2)S[YE2). A “difference of squares” transformation is used to derive a new
DF, [[3Mx)SyIM[{IMx]Ay].  Finally this DF is cncoded into its associated SF,
(Ox = yX3x + y)

Major components of the linguistic theory arc a Transformational Component, and a
Translation Component.  The Transformational Component provides  a  list of the
transformational rules used in the manipulation of algebraic cxpressions.  (See Kirshner,

1986, for a discussion of the problems encountered in constructing the Transformational
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Component) It will be necessary o refer later 10 associative and  commutalive
ransformations for addition and multiplication; o the expansion wransformation used to
multiply together two polynomials of the form
@+ b+ .+ cXdx +y + .. + 2); and to the arithmetic wansformation which
replaces a binary combination of two numbers by the appropriate result.

THE TRANSLATION COMPONENT

The hypothesis which is the topic of the present paper concerns (most directly) the
Translation ComponenL  Four stages are postulated in the translation beiween deep
and surface forms. For the present purposes, we will consider translation from SF 1o
DF although, as is clear from the above discussion, a comprehensive  treatment of
symbol manipuiation must account for both the encoding and decoding of SF's. In
the original formulation (Kirshner, 1987) translation is directed from DF 10 SF, so w0
maintain consistency with that version, the stages here are numbered in reverse.

Stage 4 cleans up such details of surface representation as the insertion of ™" into
square root signs, and the replacement of parentheses and braces by brackets. Stage 3
inserts brackets where parsing cues are indicated only through physical artifacts of the
representation of operations.  As an cxample, x2y becoines x[Zy because being in the
exponen! is a parsing cue. Stage 2 expresses operations in the capitalized abbreviated
nowtion of DF. Stage 1 effects the insertion of brackels according to a conventional
hierarchy where surface cues in Stage 3 have not alrcady dictated the parse.  For
example, 3MxE2 (3x°) is parsed as 3M[XE2) because of the relative positions of
multiplication and exponentiation in this hierarchy.  As an illustration of the
Translation Component, the SF, 51 - x + r)zy. is translated w0 its DF,
SMINSIANERMY, as follows: 51 - x + 02 > o1 = x 4+ g% 35
1 - x4 gt 2 SMISXAI E[2My] ~—> SM[[[1Sx]ArJE[2My]].

The conventional hicrarachy of operations which governs parenthesis deletion in Stage 1
is given by Schwartzman (1977):
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Operation Hierarchy

Level 1 operations are “A" (addition) and "§" (subtraction)
Level 2 operations are "M" (multiplication) and "D (division)

Level 3 operations are "E" (cxponentiation) and "R" (radical)
(In this classification, Level 3 operations are said 1o be higher than level 2 operations

which in tum are higher than Level 1 operations.)

The process of parenthesis insertion (Stage 1) eniils rtepealed passes over the
expression. Al each siep, lests are required 1o choose the most precedent operation
from among those Temaining for the appropriate insertion of brackets.  (Kirshner
(1987] argues that the syntactic struciure is assigned from least precedent to most
precedent by humans cngaged in symbol manipulation, however, that hypothesis is

irrelevant to the present concerns.) These lests are provided for in the following rule:

Syntactic Pule

(a) Parentheses are inseried around the subexpression with the highest level
operation.

(b) If adjacent operations are of equal level, then brackets are inserted
about the subexpression on the left

(A technical definition of adjacency is not provided here.) In the above example
Stage 1 is accomplished in two steps: SM[ISxAT]E[2My] -—~—2> SM{[1SxAr] E[2My]]
becauss E is a  higher level  operation  than M (part a); and
SMI[1SXADE[2My]] ——> SMI([ISXIATE{2My]] becausc S and A are of cqual level,

and S is to the left of A (pan b).
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THF HYPOTHESIS

This version of the Syntactic Rule leads in a straightforward way to the usual binary
parse of cxpressions. For example, x + y + z is assigned the DF [xAylAz. Due
lo the associativity of addition, [xAy)Az and xA[yAz] répresent equivalent values.
Thus it is legitimate to ask whether the DF representation of x + y + 1z is
[xAylAz or xA[yAz]. More radically, we may question whether x + y + z receves

a binary parse at all. Perhaps the two additions are treated as equally precedent

For associative operations, addition and multiplication, the non-binary hypothesis is
relatively straightforward.  The suggestion of this paper, however, is more far-reaching.
It is proposed that the syntactic rule which underlies the parsing operation for the
competent symbol user does not assign a parse for any expression whose operations
are of cqual level. The technical formulation of this hypothesis is accomplished by
the simple deletion of part (b) of the above Syntactic Rule.

This proposal is not as problematic as might appear al first glance. Almost all of
the non-associative operations (division, cxponentiation and radical) have a binary
interpretation imposed at Stage 3 of translation. For example, concemns over the
intermediate form xDyM:z do not materialize since the division operation would have
specified a parse at Stage 3. For each of the potential SF representations of xDyMz,

X X . . . :
= and —yL the position of the syinbols and extension of the vinculum determines an

zlnambiguous parse at Stage 3. Thus "xDyMz" will have already been assigned a
parse before arriving at Suéc 1 of translation. Subtraction is the only non-associative
operation for which a binary interpretation is not imposed in SF, Thus according to
the present  hypothesis, xSyAz would remain unparsed even though the binary

alternatives, [xSy]Az and xS[yAz] are nonequivalent This leads, for zxample, to the
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possibility of applying the coinmutative wransfommation  for addivon to xSyAz, yielding

the nonequivalent DF, xSzAy.

Despite  this serious drawback, thc hypothesis  warrants further considerabon. A
difficulty cncountered in the Transformational Component of the hngwstic  theory
concerns the representaion of  sublraction/negation.  The transformaton  delincaung
polynomial multiplicauon could not be expressed in terms of sublracted terms. Instead
it was necessary 1o  cxpress sublracton as the  sum of a necgalive term
(xS ——> xA[Ny]) prior to applying the cxpansion wansformation,  While it is
unlikely that subtraction is always so represented (for example it would be difTicult to
ascribe  psychological validity to the reinterpretation of the “Difference-of-Squares”
transformation as the "Sum-of-a~Squarc-Plus-thc-Ncg,auon-of-a-Squarc' transformation),
it appears to be impossible to operate upon subtractions direcdy in the context of

somc polynomial transformations.

Some data which Seem to inadvertantly bear on  this problem were collected by the

author in investigating a quite different question (Kirshner, in press). A sample of

137 fourth year cngincering Students at the University of British Columbia were asked

o evaluate each of the following cxpressions for x=2:

1) 5x + 7 = 2) 5x¢) = 3) 46 + x) = 4 3 + 4x =
) x -2 = 6) 2~ x + 1 = 73+ =
8) 19 - 4 + 2 = 93 + (Ix - 2 = 10) 5« x + 1=

Such problems are very simple for students at this educational level. Indced only 14

students in the sample did nol score perfeclly (a total of incorrect responses and
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one ommitted response).  Clearly tiese errors are a  margmal phenoniena, however,
they arc not random. Twelve of the 15 errors (including the missing  response)
occured with the trinonnal cxpressions, #6. #8 and #10 (the lion’s sharc going to
#8).  In cach of these cases the response given (if any) was compatible with the

incorrect parse of the cxpression; eg. 19 - dx + 2 = 19 - (4x + 2).

Therc are many ecxplanauons possible for these errors. ' could be that unhke their
peers whose syntactic representations are binary these students construct a non-binary
representation.  (Of course 1t would still remain 10 cxplain that ten out of cleven of
these students got two of three similar questions correct)  Altemnatively, it could be
that subtraction, which for therr peers is represenied as addition of a negative, for
these students iy gust subtraction,  This, however, would seem 10 lead o the prediction
that these semor cngineenng undergraduates would be unable to correctly rearrange

terms i simple  polynomials.

A third possibility does not require postulating such major deviation in the cognilive
structures  of the crring students.  Questions #6, #8, and #10 are nonstandard
problems in that usually only one or none of the terrns in a polynomial is constant
It could be that the cvaluation of polynomials is governed by an ad hoc lefi-to-right
procedure.  The need for initial focussing on a middle term (for substitution purposes)
cnbedded between two constants may have been just sufficiently distracting to override
tis ad hoc constraint for a small minority of students. ‘This explanation has the
advantage of leaving the synlactic structure of cxpressions and the representation  of
subtraction homogeneous for the entire sample, entailing only a slight modification of

cognilive structures to explain the crrant behaviour.

O
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This third explanation is consistent with the hypothesis of non-binary representation,
A polynomial expression such as 3¢ - 4x! ~ 2x + 1 is not assigned the complex
parse. {{3eY - [4x)] - @)+ 1. but the much simpler and more flexible
parse, [3(x)] - [4xh] - () + 1. Ad hoc constraints then prevent the application
of transformational rules (e.g. Commulative and Arithmetic transforrnations) in  ways

which would lead lo errant results.

Clearly this issue is not finally resolved by the sketchy considerations and evidence
presented above, however. a case for the plausability of non—binary representations  has

been made. Besides recommending the issue for further analysis and rescarch this

report is also inlended to bring into question the automatic practise of assuming some
explanatory link between fonmal mathematical models (in which operations are binary,
for example) and psychological models. and to emphasize the need for detailed and

rigorous formulations of the latier.
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THE STATUS AND UNDERSTANDING OF GENERALISED ALGEBRAIC
STATEMENTS BY HIGH SCHOOL STUDENTS

Lesley Lee, Concordra University

A brief review of the results of the first year of a research
project looking at grade 10 students’ algebraic concepts is
followed by a specific look at their understanding of generalised
algebraic statements Attention 1s focussed on the work of one
student across three problems The first problem reveals that
students are fairly competent at producing generalised algebraic
statements once a usable pattern has been perceived. A lack of
flexibility in pattern perception seems to be the main stumbling
block. In the second problem we see that once generalised
statements are produced most students do not invest them with
any meaning or see any use for thern other than as a condensation
of the problem statement. Only a minority of students seemed to
see their use in substantiating a generalisation. That few
students use algebra or appreciate its role in justifying a general
statement about numbers, is the conclusion of the third problem.

This paper focuses on one aspect of a research project conducted by David
Wheeler at Concordia University and funded by the Social Sciences and
Humanities Research Counci! of Canada in 1986. Algebraic_Thinking in
High School Stydents Their Conceptions of —Generalisation and
Justification. A full report of the first year's work is available.

A test instrument of 4 questiohs was administered to 350 grade 10
students in three Montreal schools at the end of February. Each student
responded to ene question from each of four question groups involving a
bank of 12 guestions in all. Twenty-five of the tested students were
subsequently interviewed for 30 minutes each while working on similar or
the same questions Analysis of the test results and interview protocols
supports the following general conclusions:

I. A majority of students do not appreciate the implicit generality of
algebraic statements involving variables.

2. For most students, numerical instances of generalisation carry
more conviction than an algebraic demonstration of the
generalisation.

3. Many students do not appreciate that a single numerical counter-
example is sufficient to disprove a hypothesised generalisation
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4 Students who can cornpetentiy handle the forms and procedures of
algebra rarely turn spontaneously to algebra to solve a problem
even when other methods are more lengthy and less sure

The first two findings are compatible with resuits obtained by other
researchers (e g Bell, 1976, Fischbein and Kedem, 1982), though our data
1s generally richer and covers a greater variety of algebraic situations
The last two findings have not, to our knowledge, emerged so clearly
before

in a paper presented at PME-NA 1n Septemper 1986 we looked at students’
conception of justification in algebra as revealed through the test and
interview performance of one student, Eve This paper is in some Sense a
complement to that paper 1n that we will examine the other theme of our
research, generahsation,with particular attention to the work of a second
student, Yves. Yves 1s In many ways the complement of Eve WhereasEve's
work was reasonably typical of that of the majority of students tested,
yves performance was Quite unusual Judged by his reguiar teacher to be
one of the weaker students, Yves nevertheless appears resourceful and
comfortable with the language of algebra.

Students abihity to produce a generalised aigebraic statement was tesled
using a series of problems involving generalisation of dot and number
patterns We will examine here the dot triangle problem which was given
to 8 interview students

Suppose the ahove sequence of oot -triangles 1s continued accoraing to the
same rule, how many dots will there be in (1) the 5th triangle (1) the
100tn triangle (111} the pth triangle 7

A similar problem involving dot-rectangles was given to 176 students cn
the test and another 8 interview students Aithough the rectangle pattern
seemed to be much easier for students, their work there does contribute to
our analys)s of that done on the dot-triangie.

yves, who was given the dot-triangle sequence, perceived a whole series
of patterns His first perception seemed to be a diagonal one. He drew the
fifth triangle from the fourth by adding a diagonal realizing that the
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number of dots across the top cqualed the number In the diagenal as well
as the number of the triangle At the same time he estabiished the number
pattern for the total number of dots in the first six triangles While
thinking about the hundredth triangle he estabhshed the formula
“xex-1..until x=1" which dissatisfied him because "It takes a long time".
Asked about the hundredth triangie he wrote 100+93+98+ .1 and said he
thought there might be a xey on the calculator which would shorten the
work At this point Yves switched to an entirely different pattern
perception He began studying the dot triangles again and relating them to
the total number of dots in each He began to see a pattern in the ratio
(number of dots in triangie) - (number of dots along side) “it seems to go
down by 37 He explained to the interviewer “I'm just trying to get a
constant” Very engrossed in calculations he suddenly wrote
x.((x0,5)+0,5), encircled 1t and declared “That's 1t"

Looking more closely at Yves' shifting percept:ons of pattern here, we
might 1llustrate them as follows
1 Dhagonal pattern each triangle 1s obtained from the previous one
by adding a diagonal of n dots For example the fifth is obtained

from the fourth by adding five dots ¢ o 0 o /a
.‘0 ...
LA

)/

2 Equality pattern the number position oﬂach triangle in the
series equals the number of dots across the top as well as the
number of dots along the side Yves' expressed it this way
“dots across= # of triangle  dots down= # of triangle”

3 Total number of dot pattern. students count the numbers of dots In
the first five or six triangles and then proceed to establish the
general term of the series 1, 3,6, 10,21, .. Most students, like
Yves, arrive at the general expression x+(x~1)+{x-2) .. 2+1.

4. Linking two number series here triangles are ignored and a
relationship 1s sought between the two number sertes (i) 1, 2, 3,
4,5, .. representing for Yves the number of dots along the side of
the triangies and(ii) 1, 3, 6, 10, 15, .. the total number of dots in
the triangles. Dividing the terms of the second series by the first
Yves gets the series 1, 1.5,2,25,3,.. which he realizes is going
up by 05 Letting x represent any number in the first series and
focussing particularly on the fifth and sixth triangles, Yves
creates the expression x(0.5)+0.5 which he then multiplies by x to
get his final response This can be seen to be another form of the
formula for the sum of the first n natural numbers.
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Students exhibited many other perceptions of pattern here  Some were
more useful than others in suggesting a formula The key to success
however seemed to be flexibihity of pattern perception such as we
witnessed in Yves work Many students who had a single perception and
who, like Yves, arrived at the sum of the first n natural numbers blocked
there because they were unable to find a formula for this interviewer
interventions were particularly confusing to students in these questions
because interviewers were constantly talking to their own pattern
perception which in many cases was not that of the student Two
pedagogical lessons can be learned here Firstly the importance of
teaching students flexibility in pattern perception and secondly the
importance as teachers of being aware of our own pattern perceptions and
sensitive to other possibilities.

Expressing the perceived pattern in algebraic language did not seem to be a
major problem for most stucents in these problems. Asked what the n th
element of the sequence would be, students had no choice but to produce an
algebraic generalisation The main stumbling block in producing a
generalised algebraic statement was the ability to perceive a usable
pattern Only one other student was able to solve the dot-triangle problem
and she, 1ike Yves, showed great flexibility in pattern perception

A second question, given to 116 of the test students and 9 interview
students, involved both generalisation and justification

A girl multiplies a number by 5 and then ados 12 She then subtracts her
starting number and divides the result by 4 She notices that the Mswer
she gets is 3 more than the number she started with  She says, 7 think
that would happen, whatever number | started with =

/s she right 7 Explain carefully why your Mswer IS rignt.

This question was dealt with in considerable detail in the PME-NA ‘86
paper but with the accent on justification rather than generalisation In
that paper we looked particularly at the work of Eve whose work was
typical of that of a third of the students given this question. “As | read
the problem | wrote down the formula That's what | always do.” was
Eve's explanation of the correct algebraic identity written directly
underneath the test question. The status of Eve's generalised algebraic
statement became increasingly clear as the interview progressed. Eve
used the identity to set up her first numeric example and then abandoned
it Successive examples were created from the first example and her
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concluston that the girl waz not right was based on her four numeric
exanples Eve's creation of a generalised algebraic statement seemed to
be automatic but entirely meaningtess for her

Yves did not go into automatic algebra mode as Eve did and his progress
through this problem was a constant struggle to understand why the qirl is
right After trying the particular cases of starting with 3 and with 6, he
said he thought she was right Asked how he knew, he referred to the fact
that “you can always divide it by 4 for some reason”. Asked if it would
work starting with 5287, he reexamined his example starting with 6 and
eventually said, "I guess whenever you times the number by 5 and subtract
what you timesed it by, and you add 12, it's divisible by 4 .. Yeah You
always get, whenever you, uh, multiply something by 5 and you subtract by
what you multiphied it by, it's always going to be a multiple of 4° Yves
checked another examplie “Why do you think that is?"

He now quite spontaneously generalised his observation and began checking
itout “F'mtryingit instead of using S I'm using the number below . and
1t works. Like if you multiply by 4, if you multiply any number by 4 and
you subtract what you muitiplied by, it's going to be a multiple of the
lower number, the one below (1€ 3)" Asked why, he said “Maybe it's just
the way numbers work”, and invited to establish the property without
recourse to vague statements he wrote yx -y = mult x-1

On the evidence of this protocol, Yves 1s able to “see the general in the
particular” and to move confidently from particular examples to
generalisations and vice-versa When asked If 5287 would work as a
starting number, he goes back to his worked example of 6 to find an
answer, and he finds without prompting a generalisation of the structure
of Sx-x. Krutetskii talks of “seeing the general In the particular” as a
characteristic marking of f able students from the rest

“. there is another way, in which able pup1ls, without comparing
the ‘similar’ .. independently generalise mathematical objects,
relations and operations ‘on the spot, on the basis of the
analysis of just ane phenomenon They recognise every specific
problem at once as the representative of a class of problems of a
single type. * (Krutetskii, 1976)

it seems possible that this method of generalisation is not confined to
able students but is paradigmatic of everyone's generalising style. This
point, however, is not made in the psychological literature on
generalisation and may be difficult to establish
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The third and final problem we will examine here was one of a series of
three problems concerning the justification of statements about
consecutive numbers.

The product of two consecutive whole numbers Is an even number

/5 this statement true? Can you explain how vou know @

How does one Justify a general statement about numbers? Does algebra
have a role 1n this? In a test question where he was asked to choose the
best response to a similar problem concerning the sum of consecutive
numbers Yves, like 40% of students chose an algebraic demonstration over
a verbal one and a justification based entireiy on 3 examples

Given the above problem Yves wrote the numbers from ! to 10 with the
product of each consecutive pair underneath and decided the statement
was true He searched for an explanation why and repeated the problem
statement, suggesting that “. an odd times . 1| think it cancels out, or
something, and the even wins.” Later. “it's a law or something”. Wwhen
asked for "something more mathematical” he produced the aigebraic
expression xZ+x and used 1t to Gemonstrate evenness by considering the
cases x odd and x even separately He worked through the case of x even
and x odd referring to x=6 and x=7 but in a very different way than most
students who introduced numeric examples Looking at his argument we
see that the 6 and 7 are used more to illustrate than justify.

“Every time you square an ev .. an odd number you get an odd
square | .. forty-mine. Whenever you add two odd numbers
together it's always an even. (Here interviewer says “That's too
fast for me") Okay, well x squared is these sevens .. is forty-
nine (Here he writes 49+7=56) .. If you use an even number
let me think. Five, no, | mean six .. plus six. You get 36 plus 6
which is equal to 42 So it's always even.” (Writes 62+6=42)

when the interviewer asked “but how do you know that's going to work for
other even numbers?”, Yves replied “ ‘Cause of the formula, it should”

Although Yves was slow to introduce algebra here he did not seem to be
satisfied with his explanation until he used the algebra. He was the only
interview student who used an algebraic demonstratfon here On a similar
test problem which asked students to explain why the sum of two
consecutive numbers is always an odd number and their product even, only
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8 of the 118 students used algebra in their justification of the sum and
only 2 of these were able to use 1t in the case of the product 27 students
did express consecutive numbers as x and x+1 and showed they were able
to write the expressions for their sums and products but the majority of
these used their algebra either to create examples by substituting values
for x or to set up equations and solve for x (1e 2x+1=7, x=3, x+1=4 which
are consecutive numbers) The justification produced n the consecutive
numbers questions appeared to be very sohidly entrenched in number
examples and both the algebra and to a lesser degree the even/odd
non-algebraic discussions were more for the form or peripheral to the
main work Yves was one of a very small number of students who seemed
to appreciate the role of algebra in justifying a general statement about
numbers

Our jook at student's appreciation of generalised algebraic statements 1s
very incomplete and will need to be the object of much more systematic
research We hope to continue our research looking at the influence of the
instructional context on students’ understanding of generalisation In
algebra and undertaking a teaching experiment to determine whether
students’ understanding of generalisation can be improved by special
instruction

To date the research hterature has not been extremely helpful
Considerable literature exists concerning the theme of generalisation.
Some of this literature concerns generalisation as a human activity, some
restricts discussion to mathematical generatisation, and some touches on
algebraic generaiisation All authors seem to presume that everyone
knows what generalisation 1s although no two authors seem to be
considering the same activity and many iend to jump about in the meaning
they give to generalisation within a single discussion. The confusion
surrounding generalisation is compounded by a lack of clarity on what
constitutes algebra leaving the definition of algebraic generalisation
totally arbitrary. For example, in the Open University text Routes
to/Roots of Algebra (1985) we read “Generalily is the lifeblood of
mathematics and algebra is the language of generality” (p.B) Later
however in the same text we read: "algebraic language provides both one
way (there are others) of expressing generality because it is compact and
succinct, as well as a tool for manipulating general expressions to reveal
new relationships among them.” {(p.56) What is clear from the literature
as well as our own research is that much more work needs to be done tn
the area of generalisation if it is indeed "the lifeblood of mathematics”
and more particularly in the area of algebraic generalisation if algebra is
to become "the language of generality” for our students.
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A PSYCHOLINGUTISTIC PERSPECTIVE OF
ALGERRATC LANGIHAGY

F. Alexander Norman

liniversity of North Carolina, Charlotte

This paper includes a description of a psycholinguistic
perspective trom which we examine relationships amonp
lanpuape, cognition, and experiential phenomeuna. Lanpguage
influences both thought and perception ~ this thesis is
followed through in an explanation ot common syntactical
misconceptions in students' interpretations of alpebraic
structure.

There has been, over the last two decades, an expandinpg body of research
dealinp with the learninp of alpebra. Kesults ot several recent studies
include the delineation of students' difficulties with algebra that are
associated with alpebraic symbolism. Foe example, Matz (1979Y) and
Chalouh & Herscovics (1983) have identified and investipated
misconceptions about concatenation of numerals and literal variables;
Kieran (1984), among others, has indicated that students sometimes
perceive variables in algebraic equations difterently than they do in
alpebraic expressions; Wapner (1981) pointed out difficulties some
students had with changinpg the literal variable in equations and has
also described some of the semantic differences between verbal and
numeric variables (1983); Wapner, Rachlin & Jensen (1984) and others
have made important contributions to the literature concerning students’
interpretations of algebraic lanpuape. The variety of syntactic and
semantic interpretations which students pive to alpebraic languape
suppests that a psycholinpuistic perspective of these interpretations

may be helpful in elucidating students' understandinp ot alpebra.
PSYCHOLINGUISTIC PERSPECTIVES

Since the turn ot the century psycholinpuistics has developed into a
complex, eclectic field reflecting a variety linguistic perspectives,
epistemologies, and theories of copnition and copgnitive development

(e.p., llormann, 1970). This is not the place tor a retrospective of

the historical development of psycholinpuistics; however, a few words
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may help to illuminate the genesis of the perspective taken in this
paper. [A more fully developed and detailed exposition ot a
psycholinguistic approach to alpebra will be found in Norman (in

preparation). )

In its simplest tormulation the object of psycholinpuisties is to
describe thec processes of languapge use. The work of Vygotsky (1962)
and Luria (1982), particularly in reference to the ontogenesis of
language and the role of language in the repulation of thinking, has
significantly influenced my general approach to the application of
psycholinguistics to algebraic language. Additionally, Whorf (1956)
proposed complementary hypotheses of linpuistic determinism (language
determines the categories in which we think) and linguistic relativity
(different languages constrain the development of relatively different
cognitive categories) which, in a modified form, underlie some of the
assumptions taken here. Although reaction to Whort's theses has been
mestly nepative, a recently developed paradigm, cognitive structuralism,
has placed on a much firmer theoretical base investipations of the
related question, “What are the conditions and constraints on the
influence of linguistic constructs in the shaping of thought?". The
cognitive structuralist perspective, founded in the work of Piapet and
Chomsky, holds, as guiding tenets, that:

1) Cognitive structures (separate from behavior) mediate hetween
perceived phenotena and our reactions (behaviors) to those
perceptions;

2) Cognitive structures develop via interaction with external
phenomena; and

3) Cognitive structures are distinct from, but influenced and

elaborated by, language (Bloom, 1981),

Figure 1 is a simplitied schematic representation ot the cognitive
structuralist view of the associativnhsamong perceived phenomena (world),
the mediating function of cognitive structures (copnition), and
language. The bidirectional arrows represent cognitive mechanisms
(such as perception) and non-cognitive processe. (such as sociocultural
influences) which interactively atfect the three constructs of world,

cognition, and language.
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Copnition
T
A/

Lanpuape World

FIGURE 1

The diagram does not adequately retlect the dynamical relationships and
interactions amonp, the tnree constructs. ln particular, note that
linguistic understanding (and thus its influence) is subject to
evolutionary processes, and develops, if not in parallel, at least
synchronously with the evolution of cognition and the world, continuously

intfluencing and being influenced by them.
ALGEBRAIC LANGUAGE

The oripins ot natural verbal and written languape are different -
verbal language develops sympractically, primarily through social
interactions, whereas written language cmerges from special learning
(Luria, 1Y82). Nevertheless, there is a divect syntactic isomorphism
between natural verbal and natural written language. Note that 1 do not
infer a semantic isomorphism, although for the native speaker of a
lanpuage the natural association of written lanpuage with its verbal
image (under the syntactic isomorphism) is semantically rich. A prime
feature that distinpuishes symbolic alpebraic lanpuage from symbolic
(i.e., written) natural language is the evident tact that alpebraic
languape no longer has a direct, coherent §emantic association with
verbal language. Any experientially-based frames of reference for
alpebraic lanpuage are too weak to supply students with an adequate

semantic support for alpebraic understanding.

Mathematical languape is envisioned here as a web of symbolic dialects-
an arithmetic dialect, an alpebraic dialect, a set-theoretic dialect,
and so on. Now, keeping in mind the tenets of cognitive structuralism,
we consider some linguistic influences on learners® construction of an
alpebraic grammar (following Chomsky). Two important influences on the
construction of an alpebraic grammar are related to the depth of
knowledpe of natural languapge and knowledge of the arithmetic dialect.
Evidence from some of the studies mentioned previously suggests that

sometimes students attempt to pain a syntactical understanding of

alpebraic structure by applying {(often inappropriately) syntactic

O
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rules from natural lanpuage or arithmetic, Thus, hoth inter- and
intralinpuistic mechanisms are involve ! in students' constructions of

alpebraic grammar.

A simple illustration of the ubove remarks can be found in students'
misconceptions involving concatenation of a numeral with a literal.

A student, say, who perceives the algebraie expression %y as an
integer in the 50's has made an inappropriate application of legitimate
arithmetic rules of syntax in an algebraic situation (which, ot course,
has its own, quite different, syntactical structuve). The example herce
shows that the arithmetic dialect influences the perceived structure

of the algebraic dialect (see diagram below).

arithmetic syntax ————————%» algebraic syntax

The following example illustrates how the syntax of matural language
might influence students' perceptions of algebraic structure,
Consider the followinpg two problems given to a class of clementary
education majors (they were not presented consecutively):

(1) Llarry made two donations to the World Wildlite Fund totaling

$60. One donation was for $40. How much was the other?

(2) Joan drove a total of 50 miles in one hour. On one part of the
trip she drove 35 miles per hour. How fast did she drive

during the other?

Although the semantic content, especially the quantity structure, of
these two problems is signiticantly different, the syntactical structure
is identical. In cach problem we have "quantity 1 combined with
quantity 2 results in total quantity." The syntax appears to imposc

an additive structure in the transition to algebraic lanpuapge~ perhaps,
Ql + Q2 = T, In fact, 8 of 22 students apparently found the natural
language syntax powerful enough to dominate both the natural lanpuape
and algebraic semantics of the situation, and arrived at a comfortable
15 miles per hour for the seccond part of .Joan's trip. Thus, we have a

clear example of natural language syntax influencing the structure of

algebraic syntax.

natural language

» alpebraic syntax
syntax

O
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Actually, it is not too surprising that students would ignoro <.
semantic content of the natural langu.. qucstions posed in th

previous example. Atter all, students are oncourdaped to make uniich
translations whenever possitile ( the "whenever possible' is t1 often
overlooked key). Fercentage problems come to mind as a class «f
statements which, when stated as textbooks usually du, are sy “iactically

isomorphic with algebraic language.

The powmerful influence that bhoth natura:i language and arithme.ic
syntactical structures have on the development of an algebraic syntax
suggests that there is a linguistic aspect to the cognitive cbistacles
That arise when a gtudent ig experiencing conflict among two or more
frames of reference. Herscovics & Chalouh (1985) have descrised some
of these obstacles as they emerge in the transition from an acithretic
to an algebraic frame of reference. It is worthwhile to note here thet
these researchers attempted to have their studerts circumvent some of
the obstacles by linking the arithmetic and algebraic structuy.es
together via a common geometric association. It may be the case that
the figural syntax of geowetry is an effective mediator between
arithmetic and algebraic language.

A third example of how syntax has a structuring influence on the
developmant of an algebraic grammar illustrates more than the previous
examples the evolutionary nature of the grammar. In fact, this example
is intradialectical, almost self-referential, because it illustrates a
syntactical transition within the algebraic dialect itself. Consider
the intreduction of functional notation (e.g., y = f(x), sin(x), etc.).
This new notation is more subtle (syntactically) than we might think

(I still have calculus students who write sin(x)/x = sin ) because the
symbolism is not new, but the interpretation is. Just when students
know parenthetical expressions are multiplied (£(x) means f.x and

f(x + h) = fx + £h ), as are concatenated literals (xxyx3 = 3x3y and
similarly csc(2) should be 2¢Zs ), they find out otherwise! Whatever
grammar the students have when they are first exposed to functional
notation, it must be elaborated in order to accommodate the new
structural interpretations. (Note that part of this elaboration will
inctude rules which must take into account mathematical conventions.

Conventions are essentially a product of social interactions, thus we

see that a Vygotskian perspective is relevant.)
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COGNTITIVE STRUCTURES

Natural . T Alpebraic F\;%rld

—>
Language "~ 1 L.anguage

1
h\\\\\§ Arithmetic éff/;"

- Language

FIGUKE 2

Figure 2 summarizes some of the connections which have been discussed
so far. The dashed arrowheads indicate directional influences that
have not been discussed but which fall within the constraints of the

psycholinguistic perspective used here.

An idea that is reinforced by the three examples we discussed is that
the development of an algebraic grammar is an evolutionary process.
Apropos of syntactics, such a grammar is simply a theory of correct
syntax which is constantly undergoing testing and modification until

the theory becomes an adequate tormulation of rules tor the construction
ot alpebraically grammatical syntax. What has been said so far does

not cven address the more important question of semantics.

Semantic knowledge of algebraic grammar can not be rule driven (as
syntax can) any more than can semantic knowledge of natural language.
But, as there is no coherent 1ink between alpebra and natural language,
it is difficult to see how to provide an enriched semantical structure.
‘The ideal situation would be to find a semantically rich representation
system and an isomorphism which linked such a system to alpebra. A more
promising alternative would be to model the development of algebra after
the development of verbal language- i.e., sympractically. The impli-

cations of such an approach are exciting and could be far reachingp.

CONCLUDING REMARKS

‘this paper represents a first response to Wheeler & Lee (1Y806) who
supgest the importance of opening a dialogue concerning the rolcs that
various aspects of psychology might play in investigations of alpgebra.
I have endeavored here to take a look, albeit through a rather narrow
lens, at a few linpuistic influences on alpebraic language. 1 suggest
that the field of psycholinpguistics holds preat promise in providing
us with tools for examiningp and eventually understanding students'

conceptions of alpebra.
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ERROR PATTERNS AND STRATEGIES IN ALGEBRAIC SIMPLIFICATION
Lionel Tereira-Mendoza
Faculty of Educatlon

Memorial University of Newfoundland

This study examines the underlying strategles utllized in
simplifying algebrailc expressions and students' ratlonales
for their processes. Written tests were given to 230 grade
10 students and 20 of these students were individually
{nterviewed and asked to simplify expressions involving the
product of two monomials. An analysis of audio-taped intervieus
{ndicated that students were operating in two distinct, but
not disjoint spaces, namely an algebraic and arithmetic
gpace. Incorrect solutions often resulted from the application
of inappropriate algorithms or principles within the algebralc
space. This was caused by the invalid generalization of an
arithmetic algorithm or principle to the algebraic space.
Other errors occurred because of the {ncomplete conceptualization
of the algebralc space.

INTRODUCT ION

The study of algebra constitutes a major component of high school
mathematics. The basis of algebra {s the concept of a varlable and its
assoclated notations. Comprehending the solution of equations, factori-
zation, polynomials, etc., depends on students’ comprehension of algebralc
symbolization. Without this comprehension, algebra will be internalized
as a set of disjoint and meaningless rules.

Matz (1980) in investigating the nature of algebralc errors indicated
that students try to extend and adapt their arithmetic knowledge to
algebratc space and this model has been utilized by many researchers in
their attempts to analyze and discuss algebraic errors (Kleran, 1984;
Herscovics & Chalouh, 1985). The question arises as to the extent the
methematical relationship between arithmetic and algebra parallels students’
perceptions.

Researchers such as Kuchemann (1981), Mason and Pimm (1984) and
Booth (1984) have investigated students® interpretations of a variabhle.
Their research indicates that students develop different interpretations.

Furthermore, many of these interpretations do not appear to derive from

an extension of arithmetic space to algebraic space.
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Other rescarchers such as Carry, Lewis and Bernard (1980), and
Pereira~Hendoza (1984) found that students do not i{nterpret algebra as
generalized arithmecic.

As Byers and Erlwanger (1984) stated:

1t is well known that traditional high school algebra consists
largely of repetitive symbolic manipulation and that, pe-haps
of necessity, this characteristic of the subject persists to
the present day. It is equally well known that by and large
students dn not understand what they are doing. {(pp. 265-6)

1f one accepts the reality that students do not understand the
algebraic manipulations they undertake, then two questions arise: What
underlying rules do students utilize to manipulate algebraic expressions?

How do they do they interpret the rules?
SAMPLE AND PROCEDURE

Written tests were given to approximately 230 Grade 10 students
randomly selected from various schools in the Province. 1In the algebraic
test the students were asked to simplify the product of monomials such as
3y3.4y Sy4.6y2 etc.

The types of errors were categorized according to the pattern of
errors. For example, patterns involving the incorrect combining of
exponents, patterns involving the addition of coefficients and patterns
involving incorrect signs when multiplying integer coefficfents. A
subgroup of 20 students was selected for {n-depth interviews. Those
interviewed included both students with {dentifiable error patterns
(16 students) as well as students who had obtained correct solutions
(4 students). The students were individually interviewed by the researcher
and the scssions audio-taped. The purpose ot the interviews was to
determine the rationales for the proucesses the students were using to
simplify the expressions. This report presents part of the results from

the interviews.
RESULTS

I+ A very commou error was simplifying problems involving y.y. For
exapple, many students simplified 3y.4y as 12y. There were three main

rationales for this error:

O
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a. Students incorrectly generalize the distributive principle.
e.g. interpreting 3Jy.4y as (3.4)y.

In the interviews students would make comments such as “"you take
out the y". One particular student stated that he was applying the
distributive principle. When asked to explain the distributive principle
most students would resort to either a general statement such as 1t
means “taking out the common term", or select an arithmetic or algebraic
example involving the distributivity of multiplication over addition.
When asked to compare what they had written or said with their solution
to the problem (which {nvolved only multiplication), only in two cases
did this result in a changed view (the students corrected thelr process).
In all other cases they could see no tdifference' since all the expressions

have a common term.

b. Students interpret y as meaning just y and hence they conclude that
yey = Y-

When asked to explain, students would make comments such as "y.y Is
just y". When probed further it was clear that these students did not
have any comprehension of a variable. In fact, students used many of
the interpretations of a variable found in the llterature. The following
{s part of an interview with Ann (A) and the investigator ().

|Apn wrote 3y.4y = 12y]

I: Can you explain what you did?

A: 3 times 4 1s 12 and y times y is ¥

1: What do you mean by y times y is y?

A: y is just y

I: What is y?

A: y is algebra... we use {t all the time. Sometimes we use X or

z... any letter wili do.

c. Students interpret . to mean tmultiply everything' so they conclude
that 3y“.2y5 = byzo
Comments in the interviews tended to {nclude statements such as .

means multiply so you multiply everything.

2. Students do not see algebra as generalized arithmetic. Even students
who have obtalned correct solutions were unable to clearly articulate the

relationship between arithmetlic and algebraic simplification; for example,
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the relationship between simplifying 3y.y and (3.471).47\. This was

clear from a variety of responses.

a. Even when asked how they might check thelr answer, few students

suggested substituting a number. Two students who did undertake the
substitution concluded that "the answers were different because one is
algebra and the other arithmetic.” They could see no contradiction

between obtaining, 12y24 for 3y%.4y6 and 12(371)10 for 3(371)4.4(371)6

b. For those students who did not try a numerical substitution the
investigator made the suggestion that they check thelr answer by substituting
a numerical value for y. Four studentsz asked, “"What number should I
use?” On questioning they were unsure whether the number used would
alter the relationship. The following is part of an Linterview between
John (J} and the }nvestigator ().

: Could you try a number?

What number should I use?

Does it matter?

I'm not sure. T could try 2 or 3...

Try them and see what happens

[ L T = B S |

{Student substitutes}
It's not working...{Student checks work]
I: Why not?

J: Don't ...Must have done it wrong... This isn't algebra...

c. Any substitution was a whole number. Even some students who were

sure that any whole number would do, were uncertain if a decimal would work.

3. The following student was of particular interest. Joanne solved all
the problems by substituting a value for y. She assigned a numerical
value from the outset and proceeded to solve the arfthmetic problem,
concluding by reverting to the cecrresponding algebraic expression for
the solution. When asked to explain she indicated that she "had trouble

»

with letters”, but using a number and "golng backwardsa always worked.”
Her explanations scemed to {indicated that she comprehended that the
algebraic rules were the same as the arithmetic rules,, although she was

not sure why.
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DISCUSS ION

Overall, the analysis seemed to show that students operate in two
distinct, but not disjoint spaces, nsmely an algebraic and arithmetic
space. Students' perceptions of the relationships between these spaces
is complex, being {nfluenced by their comprehension of arithmetic and
algebraic concepts, principles and rules.

The surface explanation for many errors was the misapplication of a
principle, or the {nvent ion of an algebraic algorithm for a given situation.
For example, the misapplicatfon of the distributive principle resulted

{n students’ concluding that ly.4y = 12y since y is a 'common term’.

Students invented a rule that . meant multiply everything, resulting in
students multiplying exponents. Such surface explanations do not explain
the cognitive processes underlying the development of invalid algorithms
or the invalid generalization of principles. The underlying problem
appears to be a combination of the perceived relationship (or lack of a
relationship) between the algebraic and arithmetic spaces, together with
an incomplete conceptualization of algebraic space.

Students first experience with number is in a physical situation.
In the development of arithmetic tdeas it is expected that students will
progressively and slowly develop an abstract notion of number. Thus,
arithmetic algorithms and principles can be attached to abstract situations,
because it is assumed that students have had the concrete experiential base
on which to build. A parallel experiential base for learning algebralc
manipulation does not axist. Students are expected to make the connection
between arithmetic space and its generalized form (algebralc space)
without the appropriate foundation. This results in the development of

an algebralc space that {s faulty in terms of its structure and 1is

incompletely conceptualized. Consequently, when arithmetic algorithms,
principles, etc., are mapped onto the algebraic space, the resulting
trans-ormed algorithms, principles, etc. are invalid and result f1in
{ncorrect solutions. An example would be the attempt to apply the
distributive principle to the expression 3y.b4y obtaining the answer i2y.
This is caused by both an Lncorrect mapping of the principle and a
miscomprehension of the meaning of a variable. Thus, what on the surface
appears to be a fnvalid application of a principle is, in many cases,

the 'correct' application of a principle 1in an {nvalid situation. The

o 363
LRIC

R ]




[E

O

RIC

- 33 -

fault lies in the application of the principle to a faulty algebraic
space, not in the principle, per se. Similarly, when students generate
invalid algorithms, the basis of the error lies in their view of algebraic
space.

In conclusion, it is i{mportant to note that even students who could
correct simplify the algebraic expressions did not have a well developed
cognitive basis for thelr procedures. Rather, the correct solutions
often resulted from a pragmatic application of algorithms. In fact,
when pushed to explain a correct procedure, one student got 2nnoyed and
finally informed me that "It's the rule when you have letters. Everyone

knows that you add the numbers” (referring to the adding of exponents).
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UNDERSTANDING SIGN CHANGE TRANSFORMATIONS

Ralph T. Putnam
Michipan State University

Sharon B. Lesgold, Lauren B. Resnick, Susan G. Sterrett
University of Pittsburgh

This study examined students' understanding of sign-
change rules in elementary algebra, with a focus on their
informal, intuitive understanding of quantities in

situat fons and their ability to link this understanding
to formal mathematical expressions. Students from grades
5, 7, and 9 participated in an interview in which they
judged the equivalence of formal expressions arid of story
situations, matched expressions to situations, and
modified situations to fit expressions. Students were
considerably more successful in judging the equivalence
of the situations than of the formal expressions and made
few spontaneous links between the two domains. Errors
made in modifying situations to match expressions
revealed difficulties in applying successive
transformations and in interpreting expressions as
representing quantities.

An important part of learning elementary algebra is learning to
apply various transformations to the symbols in algebraic
expressions aud equations. Algebra derives its power from the
representation of situations (such as those described in word
problems) in a formal language in which manipulations can be made
independent of the initial situation. Much of the elementary
algebra curriculum focuses on the learning of the rules for
manipulation of this formal symbolic system--rules for transforming
expressions and equations. But students often attempt to learn
these rules without linking them to their informal, intuitive
understanding of mathematics, reflecting the broader problem of
formal school mathematics learning often failing to build upon more
informal quantitative knowledge ((Ginsburg, 1977: Resnick, in press).
Similarly, current theories of algebra learniny (Matz, 1983;
Sleeman, 1984) account for errors as deformations of symbol
manipulation rules; they involve no representation of the quantities
or relationships among quantities. Our resecarch examines students'
understanding of the manipulations and transformations of algebra,

with a focus on situations to which algebra expressions might refer.
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In this study we examined students' understanding of a basic set
of transformational rules in clomentary algebra: sign-changes in
addition and subtraction expressions with parenthescs (e.g., a-(b+e)=
a-b-c). The focus was on (a) children's informal, intuitive
understanding of the principles underlying the sign change rules,

(b) their formal knowledge of the rules applied to symbols, and (c)
thelr ability to link the two.

Because we were interested in students' intuitive understanding
of the principles underlying the sign~change rules before as well as
after instruction in algebra, we interviewed students in grades S5, 7,
and 9. Our main sample consisted of 28 students from each grade
level in urban and suburban parochial schools. In addition we
interviewed 8 ninth-grade students from an accelerated algebra class

and 14 ninth-grade students from slower paced algebra classes. Each

student participated in a three-phase interview, in which he or she
judged the equivalence of story situations, judged the equivalence
of pairs of expressions, and chose expressions that fit story

situations.

EXPRESSIONS AND SITUATIONS USED

Two sets of expressions were used in the interviews. The first
set consisted of the expression a-(b+c), its correct transformat ion,
a-b-c, and its frequently made incorrect transformation, a-b+c. We
call this set ngentheseq:gkgg because of the plus sign lnside the
parentheses. The second set, Rgzgggpeses—minus, consisted of the
expressions a-(b-c), a~btc, and a-b-c. The expressions seen by
students used numeric values in place of the letters. Story
situations that can be described by the expressions were generated
for each set of expressions. The story settings involved adding and
subtracting money (in a store) or combining and changing sets of
discrete objects. Following are two of the story sets:

Parentheses-Plus Situations in Discrete Object Settinp (Cupcakes)

1. David took 18 cupcakes to the bake sale. He sold 7 chocolate
ones and 2 yellow ones. (This story 1s described by 18-(7+2) )

2. pavid took 18 cupcakes to the bake sale. At lunch time he

sold 7 chocolate ones. After school he sold 2 yellow ones.
(This story is described by 18-7-2)
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3. David took I8 cupcakes to the bake sale. He sold 7 chucolate
ones,  lhen David's mother brought him 2 more yellow cupcakes.

(this story is desc.ibed by 18~7+2)

Parentheses-Minus Situations in Money Setting (Record Store)

l. Sally went to the record store with $14 and bought a record.

The record was usually $8 hut was marked $3 off. (This story
is described by 14-(8-3) )

2. Sally went to the record store with $14. She bought a record
for $8. After Sally paid for the record, she remembered she
had a $§3 gift certificate. So, the clerk gave her $3 in cash
for it. (This story is described by 14-8+3)

3. Sally went to the recerd store with $14. She bought a record
for $8. On her way out Sally saw another record she wanted to
buy. She bought it for $3. (This story is described by
14-8-3)

"THE INTERVIEW: PROCEDURE AND RESULTS

Each child participated in a three-phase interview. Phase 1
assessed the student's informal, implicit understanding of the
principles underlying the sign change rules. The student was
presented with each of the sets of three stories, asked to say which
stories were "about the same,”" and to justify the choice. Students
were generally quite successful in judging the equivalence of the
story situations and justifying the equivalence in informal terms.
An adequate explanation of the Cupcakes stories 1 and 2 (see stories
above) would state that in both stories David sold the same number
of cupcakes; it does not matter whether he sold the chocolate and
yellow ones at the same time or at different times. The percentages
of students choosing the correct story pairs ranged from 77% correct
for fifth-graders to 9i% for the ninth-graders. Percentages of
students who gave adequate explanations of the equivalence of the
various stories are presented in Table 1. Asg can be seen, performance
generally improved over the grades. Students were considerably more

successful judging and explaining the parentheses-plus situations

than the parentheses-minus sets.

Phase 2 assessed knowledge of the sign change rules applied to
formal expressions by having the student judge the equivalence of six
pairs of expressions to which the sign change transformations had been
correctly and incorrectly applied (16-(8+3) compared to 16-8+3,
16+8-3, and 16-8-3; 11~(5-2) compared to 11-5-2, 11-5+2, and 11+45-2),
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Table 1

Percentages of Adequate Explanations of Story EKquivalunce
in Phase 1

Parentheses-Plus Parentheses-Hinus
Grade Objects Money Objects Money Row
(Cupcakes) (Toys) (Cookies) (Records) Mean
_5. o 74 h 86 o 26 T 43 T 57——— o
7 96 93 48 64 75
9 85 83 68 79 80

Students were much less successful with these formal comparisons

than they had been in judging the situations in Phase 1. Only 23%

of the students correctly judped the expressions 16-(8+3) and 16-8-3
to be equal; 317% of students made correct equivalence judgments of.thv
expressions 11-(5-2) and 11-5+2. Even the ninth-graders. who were
taking algebra, did peorly in making formal equivalence judgments.
Thus, students' knowledge of the sign-change rule applied to
mathematical expressions was weak, cven after instruction in algebra.
The students did not apply their informal knowledpe of the
quantitative relationships {nvolved to the formal expressions.

Further evidence of this fallure to draw upon informal knowledpe s

offered by the fact that students were less successful in correctly
judging the parentheses-plus expression pairs than the parentheses-
minus palrs-~the opposite of the pattern found in judging the

{nformal situations. In addition, the justifications students pave

for their judgments of the formal expressions never involved
reference to the structurally equivalent sitvatfons in Phase 1.
Rather students relied on computation-based justifications, surface-
level comparisons, or the application (often incorrect) of rules for
operating on the symbols.

Phase 3 examined the student's abilitv to map the formal
expressions and the situations. The student was presented with the
story from each set that was best duscribed by the expression with

parentheses (e.g., the first story {n each of the gets presented

above). The student was asked to choose from a set of three
expressions the one that best fit the story and to explain why that

expression fit. Success on this task paralleled performance in
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Phase 1, with approximately 70% to 90% of students choosing an
appropriate expression and 50% to 80% giving adequate justifications
of why the expressions fit.

For the other expressions in each set (the ones not chosen as
describing the story) the student was asked to modify the story to
make it fit the expression. This task produced an interesting array
of errors. Many of the errors reflected difficulties in conceiving
of successive transformations to a quantity. For example, for the
expression 18-7+2, one ninth-grader modified the Cupcake story ag
follows: "David took 18 cupcakes to the bake sale. He sold 7
chocolate ones and, (pause) he didn't sell the yellow ones." This
student was unable to incorporate the second transformation (+2)
appropriately into the story, resulting in its interpretation as a
state (number of cookies left over) instead of a transformation
(number of cookies sold, or removed, from the start set).

The largest categories of erroneous modifications appeared to be
a result of students treating expressions in a strictly linear and
localized fashion, rather than concelving of the entire expression
as representing a quantity. For example, in & typical modification
of the Record Store situation to fit the expression 14-8+3, one
ninth-grade student said "Sally went to the record (store) with $14
and bought a record; the record was usually $8, but it was marked
higher; it was raised, the price was raised $3." This student
correctly interpreted the +3 as an increase ("it was raised"), but
applied the increase to the wrong quantity--the price of the record
instead of the amount of money Sally had. The student did not seem -
able to construct an adequate representation of the two successive
transformations in the expression. Errors like this were made by
numerous students on all of the stories and expression types. They
had considerable difficulty constructing appropriate situations for
expressions, again reflecting difficulties in linking the formal
symbols with the reference domains represented in the situations.

Even after matching expressions to and modifying the situations
in Phase 3, few students were able to justify the equivalence of the
expressions in terms of the stories. The potential power of thinking
of the expressions in terms of the situational referents is, however,
illustrated by the students who were successful in explaining the
equivalence of the expressions in terms of the situations. For
example, one seventh-grader in Phase 2 had declared the expressions

16-(8+3) and 16-8-3 to be not equal because in the first ""you're
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saying 16 minus 8 plus 3" and im the second “'you're saying 16 minus
8 minus 3." Note that the student seemed to be ignoring the
parentheses, focusing only on the fact that there are different
operations in the two expressions. After some false starts matching
expressions of the same type to the Cupcake story in Phase 3
(Cupcake story 1 above), this student correctly chose and justified
the expression 18-(7+2) as best fitting the story, and modified the
story appropriately for the expressions 18-7-2 ("he sold 7 yellow
cupcakes and the next day he went to another bake sale and sold 2")
and 18~7+2 ("He sold 7 cupcakes at the bake sale, and then when he
got home, his mother baked him 2 more."). When subsequently shown
just the three expressions (18-(7+2), 18-7-2, and 18-7+2) and asked
1f any of them "would come out to be equal," the student correctly
said that 18-(7+2) and 18-7-2 would be equal "because In each story
David sold the same amount of cupcakes out of 18, so naturally it's
going to come out the same answer.' By mapping the symbols in the
expressions to quantities in the situations, it had become obvious
to this student that the two expressions are equivalent. The student
was thus able to link the formal symbols to this more intuitive

knowledge about how quantities behave in situations.

SIGNIFICANCE

The ultimate goal of this line of research is to develop ways to
improve students' understanding of the symbolic manipulations they
learn in algebra. We believe that increasing students' understanding
of the referential meaning of algebra's formal symbol system
may facilitate the learning of formal rules and the application of
algebra to problem solving and learning more advanced mathematlics.
This study provides important psychological description needed as a

base for the development of instructional interventions.
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PME X1 ALGEBRA PAPERS: A REPRESENTATIONAL FRAMEWORK
James J. Kaput

Depantment of Mathematics, Southeastem Massachusetts University
and
Educational Technology Center, Harvard University

This set of papers is uniformly excellent in depth of analysis and in importance of issues
addressed. These papers and other recent developments in mathematics education rescarch are
the basis for real optimism in the future of algebra learning and teaching, especially for long
term constructive improvement of the algebra curriculum. Research is beginning to identify
specific reasons why algebra is so hard to learn and what appropriate curricular and
pedagogical responses might be. This is not an casy task, because algebra is a complex
domain, both in the structure and in the multiplicity of its representations.

This paper has two parts. The first is an attempt to draw curricular conclusions from the work
presented. The second develops and applies a theoretical framework to this reviewed
research. 1 will not explicitly cite other work published by the authors relating to the papers
under discussion despite the fact that some of that other work has frequently influenced what |

have written here. Readers can find such references in the bibliographies of the papers under
review.

A.SHARED PERSPECTIVES ON CURRICULUM.
Too Much Meaningless Symbol Pushing - Aigebra Alienation.

First of all, there is choral unanimity calling for much less curricular emphasis on
manipulation of algebraic objects in the absence of meanings for those objects and the actions
on them. This unanimity extends far beyond the researchers represented here - virually
cveryone who has given a critical look at the standard algebra curriculum criticizes it on these

grounds.
This experienced meaninglessness of school mathematics is at the heart of the attendant and

devastating problems of lack of motivation and inability to apply mathematics as a tool of
personal insight and problem solving. Further, this core problem of school mathematics
alicnation is compounded by the inherent difficulties in dealing with a formal symbol system
isolated from other knowledge that might provide informative feedback regarding the
appropriateness of actions taken of acognitively stabilizing context for those actions.

The traditional curricular response to student difficulty with maneuvering symbols in isolation
is to sequence small picces of activity carcfully organized by syntactical features of the symbol
system and to isolate this activity from the messiness of "applications” and wider _ i
interpretations. The standard pedagogical response is to schedule ever more practice with
such symbol mancuvering. One mode of educational research response, feeding from recent
skill acquisition work in cognitive science, is to parse the structure of such symbol
manipulation skill learning and application in order to design appropriate instruction. (Iam
happy to note that none of the research in this collection of papers is of this genre.) A recent

ical response is to accept the "isolationist” approach, but to augment the skill
learning environment with additional features to enrich the expetience of symbol
manipulation, by providing "history windows," explicit representation ot"' computation or
reasoning paths, "inspectable experts,” etc., or to add "inielligent advice” on how to
manipulatc symbols in isolation of wider meanings.
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The response on the part of the students has been highly adaptive - to use ever more
superficial learning strategics, resulting in even more alienation, which in turn feeds the
respoases already listed. It is too eazly to know the effect of the kinds of technological
responses mentioned here. My bets for breaking the feedback cycle lie with intelligent use of
information technology (not necessarily “artificial intelligence™ based, however) that respects
the role of teacher and student as sense-making creatures and that capitalizes on student
knowledge and skill that have been developed outside the mathematics classroom. Apart from
the technology, it appears that most of the authors reviewed here would agree with this view.

Integrate Arithmetic and Algebra - But It Won't Be Easy.

Here the consensus is not as plain, and is much more implicit. Several papers (Booker's
especially and Lee's by implication) call for a better integration of the arithmetic and algebra
cusricula in view of the difficulties students face in the change of meanings for operations and
the equality sign, for example, as they move from arithmetic to algebra (sec also Kaput,
1979). Afterall, if one interpretation of the symbols is leared for years before an abrupt
swilch to another interpretation, trouble is the only possibility. But looking more closely at
the key ideas in algebra, those of variable, function, and conditional equality, it is not clear
exacily how the integration should be organized. For example, should variable frames be
introduced in, say, grades 3 and 4, followed in grades 5 and 6 by variables denoted by letters
- as successfully done by the Japanese (Miwa, in press)? And if so, how? Should they be
used consistently for writing arithmetic sentences, especially in modeling situations? (“Minnic
has some marbles before losing 4 to Zeke, leaving her with § marbles. How many did she
have at the beginning?" Model this as " - 4 = 5, where the goal is to put a number in the
box that makes the equation true.) Gallardo and Rojano show that the transition from
frames to literals is not trivial - simple replacement of frames by literals is not sufficient.
Morcover, Putnam and colleagues show that usiag natural language based story contexts to
model the syntax of sign changes requires special care to establish the mapping model. And
Booth and Filloy show that the use of concrete models, especially those which inherently
freeze variable values (see below), can hobble student conceptions of equation. So early
introduction of algebra is not casy.

B. A THEORETICAL FRAME OF REFERENCE.

We need a set of languages - representations - with which to communicate and think about the
languages of algebra. Given the widespread interest developing in algebra research, and the
variegated phenomena being uncovered, this need is more urgent than ever. Natural language
has normally been the primiary language for this purpose, but for the same reasons that.any
substantial research domain requires specialized re ntations that go beyond standard
useage in everyday discourse, algebra inquiry s them. The aims of a comprehensive
language and theoretical framework are threefold:

1. 10 provide means for describing the web of related languages that constitute the languages
of algebra (expressions, equations, coordinate graphs, tables of data, hybrid
constructions involving natural language fragments, etc.), thereby, in support of
Norman's main point: .

2. to complement with a linguistically/representationally oriented language the traditional
cognitively oriented language used to describe student algebra leaming and application
phenomena, and o ]

3. to provide means for discussing and evaluating the characteristics of new or potential
algebra leamning and algebra application environments, including environments with
cybernetic support features.

Four Sources of Meaning in Mathematics.

Mathematics leaming can be regarded as meaning-building. Although the idea of
representation system will be illustrated more concretely later, you may assume such systems
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include the familiar representation sysiems of coordinate graphs, algebraic equations, and so
on, as well as the non-mathematical representation systems of natural language and pictures.
In these terms we assert that mathematical meaning can be established in at least four ways:

1. By gransformations within a particular representation system without reference to another
representation, (these referentially isolated transformations currently dominate the
curriculum and lead to the difficulties described by Pereira-Mendoza ),

2. By rapslations across mathematical representation systems, say A-->B and, most
importantly,

3. By translations between mathematical and non-mathematical representations (such as
natural language, visual images, etc.)

Repeated experience with the above three sources icads to a derivative, but essential,
fourth source of longer term meaning growth that occurs all across mathematics:

4. The consolidation and reification of actions, procedures and concepts into
phenomenological objects which can then serve as the basis of new actions, procedures
and concepts at a higher level of organization. (The process by which this is achieved is
sometimes called "reflective abstraction.")

To describe adequately tlie establishing of mathematical meanings, one must necessarily be able
1o describe in a systematic way the structural features of the representations involved and,

especially, how the features interact with one another, since dealing with their differences is
what translation is all about.

An important consequence of this primarily referential theory of meaning is that we do not
assume the existence of absolute meanings, or absolute sources of meaning. Rather, meanings
are developed within or relative to particular representations. Thus, for example, there is no
absolute meaning for the mathematical word "function” (Platonic or otherwise), but rather a
whole web of meanings built out of the many representations of functions and correspondences
among them that we have available. Some of these are inherently procedural (function as a
transformer of numbers) and some relational (function as a relation between numbers). And
each of these families of meanings has its more congenial representations, €.g., the "f(x)=..."
as procedural and the "y=..." as relational.

" Mathematical Representation" Unpacked.

I find very helpful an unpacking strategy that explicitly acknowledges the representational
aspects of mathematics and hence scparates the representing entity from the represented entity.
A starting point is provided by the figure below, intended to provide a general and systematic
frame for describing representational acts, not to provide some grand formal theory. Later,
such systematic descriptions right serve to explain regularitics in the representational acts
aobserved. To help understand this point of view we must distinguish:

« the notion of mental representation as the means by which an individual organizes and
manages the flow of experience - the upper half of the figure - and

« the notion of representation system as a materially realizable cultural or linguistic antifact
shared by a cultural or language community.

“Materially realized" symbols are physical instantiations produced by pen on paper, cr
keystroke on computer screen, etc. - the lower half of the figure below. tio

their own mental representations. 1t is useful to think of mathematical representation systems
as functionally corresponding to the grammatical structures of natural language - they are the
conventionally defined organizers of the "content” we wish to express. A ccntral goal of
algebra research is to deteqmine how those representational forms are learned and applicd by
individuals to produce useful mental representations - in the figure below, how the vertical
arrow comes to be. This picture is intended to depict the major ingredients in representational
acts involving two representations, allowing for the possibility that each might be used to
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represent the other.

COCGNITTFE REPRESENTA TIONY

(Hypothetical Entities) (Signified)
(Observabie Entities) (Signifier)
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EXTERNAL REPRESENTATIONS

Here A and B can be any renresentations whatever, mathematical or non-mathematical, and
the media in which they are instantiated can likewise be virtually anything, paper-pencil,
physical apparatus (e.g., a balance scale), a computer screen, sound, etc. The horizontal
correspondence is not assumed to have a particular direction until a particular representational
act is specified - then we assume that the arrow “points to" the the thing represented. Note
that some, in the Piagetian tradition, refer to the top part of the diagram as the “signified” and
the bottom as the "siguitier” (Vergnaud, 1987). We would a!l agree that the constituents of

the top arc purely hypothetical. A very similar diagram applics when, say B, is pot a
representation system, but rather is a thing or situation being represented by A - so the
horizontal arrow at the bottom of the diagram points from left to right, from A to B (although
the cognitive version may be bidirectional). Finally, it is often the case that B in turn is
rcpresenting yet something else, in which case we introduce €, and so on.

To help clarify things, consider the following simiple example involving two familiar
mathematical representations: 0 is an alphanumeric representation of a function, B is its
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coordinate graphic representation, and the correspondence is the usual one. It may be the
case, as with some software environments that we are familiar with, that one can perform
transformations of the algebraic represent2*ion of a function and such transformations sre
reflected by corresponding transformations of its graph. This fact that we frequently use
representations in order to act on them is reflected in the existence of the transformational
arrows in the picture. Others sometimes refer to the transformed representation as a "new
representation,” as when one rewrites a function in more convenient form to emphasize a
particular feature in the context of problem solving. In this case we would refer to the new
representation as a transformed version of the old in order to emphasize that the
transformation took place within a particular representation system and did not involve a
translation across systems. (Of course, one might then attempt to interpret - i.e., translate -
the newly emphasized feature in another representation system.)

1t is clear that while some features of representations correspond to zach other, the
correspondence is generally imperfect, with features of one not related to features of the other
and vice-versa, with several features of one perhaps collapsed into a single feature of another,
etc. Furthermore, the correspondence itself may be understood (i.e., cognitively represented)
imperfectly. (There arc some subtle philosophical points we choose to ignore in this paper.
See Kaput, 1987, and in press-b, for details.)

Applying the Theoretical Framework: An Attempt at Synthesis.

We begin by analyzing Kirshner's ideas because we will then be in a position to understand a
few of the other papers as well.

Kirshner:

Kirshner's work, as only partly revealed in the paper under review, provides a penctrating
analysis of how the alphanumeric algebra symbol system is understood and applied,
especially via the relation between the spatially organized features, the "surface structure, and

the "deep structure” that they are presumed to represent. In the framework offered above, Al
is the surface structure - the symbols that we see and respond to. We are cued by these to

form (through the acts of identification and parsing) a cognitive representation of the symbol
strings that we see. Kirshner posits the existence of a deep structure of such symbol strings,

which we put in the role of B. Here B may or may not be representing anything else, so may
or may not be serving as a representation system itself. Knowledge of the syntax of algebra
then amounts to possessing a reliable and flexible cognitive version of B that is well
coordinated with one's cognitive version of A The correspondence, from AtoB,is
describable in terms of the translation rules that he offers. Much of what he says about the
psychological reality of decp structure and the translation rules is therefore about the reality of
the cognitive version of the explicit translation rules and the

A i &

cos (Coordination) cag

27(expert)

A Translation Rules B

Surface Deep
Structure Structure

appropriatencss of characterizing such translations in psychological rether than purely )
mathematical terms (c.g., field properties) or other formal terms. lagice wholeheartedly with
the thrust of his remarks, including his assertions regarding the non-binary psychological
parsing rules and especially the default to left-right processing (at least among those who read
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their native language that way).

An important consequence of accepting Kirshner's "parsing” of algebra symbol use acts is the
need 10 interpose the above two-part diagrain whenever we talk of a person using the algebra

symbol system to represent anything: It is not A that is doing the representing, but rather its
deep structure B, which, by the way, is not to be identified with Kirshaer's particular

representation of it. His is & fresh and enlightening perspective that may deserve application
beyond the symbel system to which it has been applied.

Pereira-Mencdoza:

This paper provides some nice examples of student transformation rules based on surface

structure which are independent of deep structure - students operating on R using jts cognitive
representation only. After ali. the spatial regularities apparent in symbol-string behavior,
especially if based on limited expenience, can be codificd in ways other than those dictated by
the conventional rules. And if we are to believe Lee's work that the status of algebraic
formulas as generalizations of arithmetic pattemns is not established in many studerts’ minds,
then the rules are not constrained by those students' arithmetic knowledge. Hence it is
entirely reasonable that they will be assimilated into whatever meager spatially-oriented
pattems that are available from their limited experience. In particular, the fact that they are

willing to replace 3y°4Y by 12y is an casy superposition of (s) (3+4)'y=2y wirth (b)
g'g-gz understood as the rule that aliows you to replace two appearances of % by a single
one. Note that while the reason given for the first statement is the "distributive law," this
“law" has a perfectly consistent surface structure interpretation as "add the numbers and take
outone Y.” Hence a student who provides the distributive law as a reason for (a) above is
quite likely to be thinking "multiply the numbers and take out one §." Moreover, if yis
merely a character (which might be "modified” by a rumerical cocfficient-adjective) then
again, spatially-based surface structure rules can easily account for replacing {§ *y by y.

The key to understanding all these sorts of referentially isolated transformation rule
phenomena is to regard them as surface structure rules generated out of the immediate
character-string experience combined with some natural language pattems and perhaps some
arithmetic experience (although not formal generalizations of arithmetic rules). The students
are being perfectly reasonabile in the limited symbol system context that they are being asked
to perfomm in. A good question: How to engender the usual deep structure rules that are at the
heart of algebraic syntax? My suggested answer is first to put the student in the position of
using the algebraic statements to represent something that already has an established cognitive
referent - cither a numerical pattein or some phenomenon that, in a well-understood way,
gives rise to a numerical pattem. ‘Then transform the thing being represented in such a way
that a transformaticn of the algebraic representation is required to maintain the
correspondence. This brings us to the nex: paper.

Putnam, Lesgold, Resnick, & Sterrett:

Typical acts of algebraic modeling start with 8 as & natural language, textual representation of
some situation € embodying some quantifiable relationships. The goal is to construct some
algebraic representation A of that situation, and perhaps to use that representation to reason

about C. This particular paper illustrates clearly that connecting and coordinating the
cognitions associated with each of these representations is not an easy task. The research
examines linkages between student understanding of arithmetic sign change transformation

tules (applied to ) and their understanding of situations and transformations of those
situations (C) as represented in text B. Here we must distinguish between procedure
representing objects, i.c., a phrase such as "16-(B43)" (which represents a procedure
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embodied in some story situation - selling cupcakes or buying records) and a transformation
of ane such object into another: either into an equivalent object such as "16-8-3" orinto a
nonequivalent object such as "16-84+3." The difference is confusing for students because

equivalent objects can be linked to distinct story situations C - just as nonequivalent objects
could be linked to distinct situations. (See Kaput, in press-a, for more detail on the

distinctions between display representations, procedure representing objects, and action
representations.)

(build cognitive
representation)

! 14

A K B p L
Situation

Formelism Text (;j provided)

The researchers found that students had considerable difficulty linking transformations across
the representations in such a way that could apply reasoning about the equivalence of
situations to rcasoning about the formalisms. An interesting issue is the extent that the natural
language cues served to identify differences in stories. It scemed to me that often these cues
are rather subtle, hence provide relatively weak features to distinguish the formalisms (see, for
example, the first two cupcake stories - denoting slightly different aclion-situations with
equivalent, but semantically distinct formal representations).

Norman:

1 believe the discussion in Norman's paper relating to scmantics and syntax can be fruitfully
cast in the terms of representation systems as indicated in our first Figure. The scmantics of
representation R are to be found in a reference field for A, say.B - which incans, for us, that
referential serantics is relative: There is no absolute semantics for A. The syntax of A
consists of the rules that identify and define equivalence of its objects and its allowable
transformations. (For more on semantic equivalence, sce Kaput, 1987, and in press-a)
Some of Norman's comments on the special role of natural language in interpreting algebraic
statements find even stronger illustration in the "Student-Professor Problem" phenomena,
e.g., (Clement, 1982; Kaput & Sims-Knight, 1983). As noted above, the whole approach
here is in line with Norman's call for a psycholinguistic approach to algebra research.

Booth and Filloy:

In Booth's paper R is the representation system of single variable linear equations and B is the
system of ideographs of balance scales, with parallel transformation rules defined for each.

Here B is assumed to represent imaginary, or at least invisible, balance scales € which are
further assumed to have readily available cognitive referents ccog which are assumed rich

enough to guide and constrain actions on B, which in turn do the same for A.
As Booth points out, a critical matter in the design of leamning situations based on linking two
of more representations is how the features match up, and how the central ideas - in this case

variable and equivalence - are represented. A box icon in the paper-pencil medium
representing an apple box containing an unknown number of apples docs not represent a true
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(build cognitive

representation - perhaps)

Formalism lconic Real Scale
Balance Scale (pot provided)

variable, but rather a letter standing for a single, unknown number (sec below). And if that
unkrown is regresented as an object (& box), then the translation process, governed by the
reference patterns of natural language, yields letter-as-label rather than letter as variable. And
how eze equivalence and transformations (¢.g., inverse operations) represented? For
cxample, if a balance scale is the initial modet for equivalence, then the process of
transformation to maintain equivalence is likely to be strictly additive, as was observed, rather
than multiplicative - because the underlying metaphor for balancing a scale is additive.

Filloy and Booth (as well as Booker) emphatically point out the potential weakness in
using concrete models to represent algebraic statements, including conditional equality,
because of the inherent particularity of such models - a aszuu-u'cularity which runs entirely
opposite to the inherent generality and abstractness of algebraic statements. Here is a very
important place where cybemetic models can capture the concreteness that enables the student
10 use existing cognitive structures without being frozen into particular values of variables.
But perhaps even mere importantly, such computer-based models can serve not only as
display representations, but also as action representations (Kaput, in press-a) that support
casy transformations. A fundamental issue is the role of the medium in which models are
embedded and the ability of that medium to carry an idea such as variable. Static and dynamic
media differ greatly in their ability to support the leaming of this central notion. Indeed, I feel
that one of the reasons that the idea of variable has been so difficult to leamn is the static nature
of the media in which we have historically been forced to represent it.

1 suggest that the work by Filloy and Booth using concrete models would have vastly
different outcomes (1) if their concrete models had been instantiated in the computer medium,
a medium much more congenial to variation and hence conceptual generalization, and, even
more importantly, (2) if those models were then actj i i i
formalisms, so that transformations of a concrete model would have salient consequences in
its formal counterpart, and vice versa. This then supports the leaming of the syntax of

representation 8 by providing it a semantics in the model B. Further, by appropriately
defining the environment, one can traverse the "didactical tuming point” identified by Filloy
and emphasized by Booker marking the true entry into algebra as introduced by Vieta -
where one acts on variables as well as on numbe:s.

A larger message in this episode concerns the need to focus research on the possible leamning
environments of the future rather than those of the past - to take an inherent difficulty such as
identificd by Filloy, and then build and test new teaching and leamning environments that
respond to that difficulty. (Although I am not an economist, my guess is that the necessary
information technology to support such cnvironments will be affordable at least at the level of
one computer per teacher in most countries in time for the next generation of students.)
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Booker and Lee:

1 have already mentioned Booker's arguments, mainly implicit, for doing a better job of
integrating the arithmetic and algebra curricula. Lee's results regarding the failure of many
students 1o recognize algebraic statements as general statements of quantitative relationships
dovetail extremely well with Booker's exhortations to generate situations that require
students to use algebra to formalize pattems in numerical data that in turn arises in meaningful
contexts. (These students' algebra does not represent anything!) Among the best materials |
know of that deliberately do this have been generated by a team initially led by Joan Leitzel at
Ohio State University (Leitzel & Osbome, 1985 - other malerials are in preparation), although
materials with a similar style have been developed by Zalman Usiskin's group at the
University of Chicago School Mathematics Project (Usiskin, et al, 1985). Both sets of
materiais rely heavily on the use of a calculator to generate or elaborate data, and also involve
students in plotting the data on coordinate graphs. Hence the algebraic statements are seen not
only as formalizations of numerical relationships, but also as ways of describing lines and

curévcs in the plane. Surely, others have done likewise in other countries, ¢.g., (Miwa,
1987).

Lee's extremely rich paper provides us with a good opportunity to take the representational
perspective - see our first Figure - to yet another level of detail, because much of her paper
concerns the translation process explicitly. She looks closely at a couple of students
rranslating from the numerosity of arrays of dots B to algebraic functions A and from natural
language based procedures B to algebraic equations A (which involve putative constraints on

the procedures). Her close look at the correspondences used to move from B to A involves
examining exactly how the features of the respective representations are used in such
wanslations. For example, the number of dots on the edge of the (equilateral) triangular dot
array provided a feature By that was used as the value of the key variable A in the algebraic

representation - so the edge By came to correspond to the variable A itself (and the
relationship between By and By as the "numerosity of By" gets encoded as the relationship
between A g and Aj, which is "value of A5.") She then cites two other approaches to the
translation process that arc based on different features of B. 1find fascinating the ways that
the differences in "fit" between the various features attended to affect the translation process -
somehow they differ in the cognitive structures that they generate, so that the

translation-cognitions (where, of course all the action is) are vastly different: first there arc
ducks and then there are rabbits.

But perhaps even more interesting is the role of the natural language representation system as
a mediator in the translation process. Between & and B, a natural language based € was

interposed that seems to feed the cognitive versions of both Al and B: Yves wrote natural
language statements as an intermediate step in the translation process, which is a clue to the
important, perhaps primary role that natural language plays in the interpretation of his
mathematical expericnce.

“The second translation process, associated with understanding the results of a numerical
procedure described in natural language terms, involves natural language even more directly.
We sce a strong contrast between Eve and Yves. One of the main differences between these
students is the degree to which algebraic statements represent general r.clanons.hlps among
quantitics, or in our terms here, the extent to which they have a cognitive version of the
correspondence between the algebraic and the arithmetic representation systems. The strength
and richness of such a corespondence in turn determine the Strpqgth and nchncss_of _lh_c'n-
respective cognitive versions of the algebraic systc.n - bcause 1t inherits much of its initial
structure from arithmetic expericnce by means of that correspondence. Hence we see Eve
doing what approximates a transliteration from natural language to algebra and then .
abandoning the result as a support for reasoning about the issue at hand because her cognitive
version of the algebraic representation is S0 impoverished and so isolated from her arithmeiic
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experience. But these students also differ in the richness of their arithmetic knowledge. The
richness of Yves' arithmetic structures, interestingly, in this problem do not initially contribute
to the building of an algebraic representation in which to reason about the problem, but rather
to his patural language based representation of anthmetic procedures. He manages to
represent the generality of the procedure in natural language rather than algebra, which for him
in this situation seemed sufficient - until prompted to represent it algebraically, which he
apparently did as well.

CONCLUSION

Space limitations prevent as full an examination of these valuable papers from a
representational perspective as I would wish. Hopefutly, time available at the conference will
afford that fuller examination - and thereby help strengthen the case that a systernatic
discussion of the complex phenomena of leaming and using algebra can be facilitated by
giving explicit attention to the representations involved, especiaily how their specific features
interact in the cognitive realm. Noe also that a much fuller discussion of this framework can
be found in (Kaput, in press-a).
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UNIT FRACTIONS OF A CONTINUOUS WHOLE

Jacques C. Bergeron, Université de Montréal

Nicolas Herscovics , concordia University

The first part of this paper on unit fractions of a conti-
nuous whole introduceg the theoretical framework. Fractions
are defined in terms of '‘quantification of the part-whole
relationship”. This leads to a distinction hbetween threc
levels of the notion of measure: iterative measure, frac-
tional measure, and sub-unitary measure. The experimental
work reported in the second part deals with various aspects
of unit fractions as observed among 45 elementary school
children in grades 3 to 6. The results indicate taat the
problem of equi-partition still appears in the upper grades,
but that by then, the problems of reversibility and invari-
ance have been resolved. Also, the usual vocabulary appears
to .reate a cognitive obstacle for the third graders.

THEORET ICAL FRAMEWORK

The general concept of rational number has been investigated extensively
throughout the world (Post et al,l985 ; Hart, 1981; Huntiung, 19843
Novillis Larson, 1986; Southwell, 1984; Streefland, 1984) . Most of these
studies have been quite broad and ranged over various related topics
such as the different representations of m/n, the notion of equivalence,
and th~ four operations. However, because of their wide scope, these in-
vestigations dealt with the primitive notien of unit fraction almost
fncidentally, without going too deeply into it. Surprisingly few papers
focused on the child's acquisition of the fundamental concept of a unit
fraction, that is 1/n. And yet, while m/n can be viewed as "i/n of m"
or “m x 1/u", both interpretations must rest on a prior comstruction of
the notion of unit fraction. The most important work on this topic
dates back to 1948 when Plaget, Inhelder and Szeminska studied how chil-
dren between the ages of three and eight handle tasks involving the
part-whole end part-part relationships when partitioning circles, rect-
angles, and squares. More recently, Hiebert & Tonnessen (1978) have
attempted to extend the above study to discrete sets, while Pothivr

& Sawada (1983) have investigated the development of the partitioning

process.

Research funded by the Quebec Ministry of Education (F.C.A.R. EC-292D).
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In analyzing the concept of fraction, Piaget et al (1948) have pointed
out that "initially, a 'part' is simply a piece detached from the whole,
and not an element embedded in the whole, that is, remaining mentally
linked to it even after having been separated". Their research showed
that children master equi-partitioning in the following order: two,
four, three, then five and six pieces, and that the subdivision of
rectangles seems eaaier than squares, which in turn seems easier than
circles. While the Genevans' work is the finest to date, neither their
conceptual analysis nor the tasks they have set, go far enough to claim
that they are dealing with .fractions in the arithmetical sense, that is,
a8 numbers. The taska they have designed require the subjects to split
up the geometric figures into equal parts, but does success in equi-
partitioning imply that the numerical concept of fraction is necessarily
present in their -gud?

Owens (1985) has reported on the classroom implications of recent re-
search on rational numbera. He pointed out that Kieran (1980) also
found that the part-whole paradigm is somehow insufficient to account
for the fraction concopt, Kieren suggeats alternative models for ra-
tional number, that of measure, quotient, ratio and operator. While all
these models are important in the comstruction of the general concept of
fraction, including both the continuous and discrete case, not all of
them prove to be useful in the initial conastruction of the notion of
unit fraction of a continuoua whole. In our own conceptual analysis we
find that while equi-partitioning resulta in the production of equal

parts, the notion of fraction as a number can only emerge from the ’

quantification of the part-whole relationship. It is not enough for the

child to view a piece as part of the whole. The arithmetical concept of
unit fraction requixes more: that the learner stiould know what part of
the whole is involved! Such quantification requires both a_new concept

of meaaure and a prinjtive sense of ratio.

In reporting Kieren's measure subconstruct of rational number, Owens
(1985) indicates that it appears in the context of the quantification

of the surface area of a region or the length of a segment. "A suitable
unit ia chosen and fractional parts are derived by successive partition-
ings to make the measurement more precise". This notion of measure is
very general and quite advanced. But it conceals the fact that it is
based on two preliminary stages in its construction. The first one is

the well-known concept of iterated measure which involves the iterated
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use of a measuring unit. This is sufficient 1f the quantity measured
is an exact multiple of the unit of measure. However, the measure of
part of a unit requires a new and different notion of measure, that of

fractional measure. For example, 1f asked to measure a certain length

which is not an exact multiple of a given unit, young children will
provide approximations, stating that "it measures seven and a bit" or
"almost eight". But they do not as yet perceive the left over part as
being measurable. Aund this is perfectly normal since they do not at

this stage view the unit of measure as being itself divisible.

The initial concept of fractional measure does not require any standard
unit of measure. It starts from the perception of a whole as being
divisible. Children may have this perception regardless of whether
they can perform an equi-partition or not. When presented with a pie
subdivided into six equal parts they can recognize the equi-partition

even 1f they cannot produce it themselves, In either case, the next

step 18 crucial in the development of fractional measure. They must
now quantify the part-whole relationship: "Since the whole has been
subdivided into n equal parts, each part must he an nth of the whole",

It is in this sense that fraction is a measure of the part-whole

relationship.

While fractional measure results from the equi-partition of the whole,
the reverse process, the reconstitution of the whole from one of its
parts, requires the appropriate iteration of the given part, and hence
1s similar to the concept of iterated measure. In this case, the given
part is used as the unit of measure in the reconstruction of the whole.
The similarity 1s not quite complete since a fractional part exists
only with respect to a whole whereas a 'nit of measure exists indepen-

dently and need not be part of a whole.

Of course, fractional measure of a whole is not restricted to unit
fractions and these can easily be generalized to multiples of unit
fractions of a whole (m x 1/n = m/n). But even then, children are not
necessarily ready to handle the more advanced notion of measure invol-
ving the use of both units and sub-units. For indeed, they may have
acquired the concept of fractional measure without fractions being as
yet interpreted as sub-units. For this to occur, the learner has to
perceive that the initial unit can be equi-partitrioned and that the

resulting parts can then in turn be used to obtain a more precige
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measure. The outcome of this construction is a higher level of the

notion of measure that can be called sub-unitary measure.

As mentioned earlier, the quantification of the part-whole relationship
also involves a prfmitive sense of ratio. The general concept of ratio
refers to a numerical comparison of two sets, as for example "the
elements in set A and set B are in a ratio of 3 to 7", However, in the
case of a unit fraction of a continuous whole, the quantification re-
sults from a comparison of one part to an equi-partitioned whole. The
notion of ratio involved here is primitive in the sense that one of the

sets compared 1s a singleton, resulting in a ratio 1l:n.

In the light of our conceptual analysis, we have designed an experiment
in order to investigate different aspects of elementary school chil-
dren's knowledge of unit fractions of a continuous whole. In this pa-
per, we will report on & part of this experiment dealing with the
learners' awareness of the necessity for equal parts in a partition, of
their ability to reconstruct the whole from one of its parts,and of their
awareness of the invariance of a fraction relative to the mode of div-

ision and the size of the initial figures.

EXPERIMENTATION

To investigate these questiors, 45 elementary school children,in 22
different French schools of Greater Montreal, were interviewed (10
from grade 3, 13 from grade 4, 8 from grade 5, 14 from grade 6). The
{nterviews were conducted by 19 teams of prospective elementary schobl
teachers who were in their third and final year of their B.Ed. program,
and as such had enrolled in a second course on the teaching of arith-
met{c at the primary level, The 46 future teachers were grouped into
small teams (from 2 to 4). Their training consisted of various sim-
ulations, the study of videotaped interviews, and the study of the
sami-standurdized questionnaire to be used in the assesament. Each
interview va. hiotdled by two team members, one intcrviewing, the other
one observing and audio-recording. Each recording was then totally
transcribed.

Equl-partition. The children's avarencss of the nccessity for equal
perts in a partition was investigated 1n tuvo scts of questinns., The

firet set presented th subjects with two rectangles cut ap Into cqual
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and unequal parts as follows:

Each child was asked:

HERE ARE TWO RECTANGLES, CAN YOU GIVL Mk A FLFTH OF A RECFANGLE!
CAN YOU FIND A FIFTH IN THE OTHER RECTANGLE?
In a second question, children were presented with a4 row of circles cut

up in 3,4,5,6,8 and 6 parts as well as an uncut one

QbDB®PD® O

They were asked: HERE ARE SOME CARDBOARD PIES WHICH HAVE BEEN CUT UP.
CAN YOU USE A PIECE OF ONE OF THESE PIES TO DRAW A SIXTH OF THIS PIE

HERE (indicating the uncut pie)? ... CAN YOU FIND A SIXTH IN ANOTHER
PIE?

In interviewing the children, we have found that some did not understand
the questions. Among those who did, most felt that the parts had to be
equal, but a non-negligible minority accepted unequal parts. On each
task, some were classified as transicional because of their mixed res-
ponses which focused alternately either on the number of parts or on

the necessity of equal parts. When children provided similar responses
in both the rectangle and the circle contexts, they were considered to

be consistent. The following table ptovides the distribution for each

grade:

Grade | n RECTANGLE CIRCLE Consia-
Do not Parte Uneguul | Tranal- |] Do not farts Unequal | Tresnai- teacy
underatand | must be | parts tional understandl must be | parts tionsl
gquestion equal sccepted question | equsl accepted

k] 10 6 ) 1 6 3 1 10
4 12# 8 2 2 9 2 1 1n
5 3 5 3 1 5 2 b
6 14 1 ) 9 3 2 12

& gne subject wss slisinated due to nonsepsicsl snsvers

The very marked change ovcuring between tne third and fourth grades
simply reflects the fact that fractions start being taught in grade four.
Questioning third graders has proved revealing, especlally those six

who did not understand the questions,for tli.ir answers were quite logic-
al. When asked to find a_fifth of a rectangle, some of them gave the
question an ordinal interpretation, as the fifth part (counting from

the left). To them, finding a sixth of a circle made no sense at all
since there was no initial plecc. Another interpretation was more of a

cardinagl nature, with subjects referring to the whole subdivided rect-

angle or the whole subdivided pie rather than a part of them. Also in
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this table, one finds evidence that the acceptance of unequal parts is
not restricted to the initial learning period but persists to some ex-
tent in grades 5 and 6. In all grades the children show a remarkable

consistency in their answers regarding the rectangles and the circles.

Reversibility. While the previous tasks dealt with the selection of
fractions to be chosen from appropriately partitioned whole units, the
next three sets of questions were aimed at the reverse process, that of
the reconstitution of the whole from one of its parts. The first task
consisted in presenting children with a sector of a circle (1/7)

a pencil and paper, while asking them:

HERE IS A PIECE OF PIE. WOULD YOU HAVE A WAY OF FINDING OUT WHAT PART
OF A PIE THIS 1S ?

The next task was slightly different in that it investigated if, when
given specified parts of a whole, children would anticipate the number
of pieces required and recqnstitute the whole.

HERE IS A FIFTH OF A PIE ZE& .  HOW MANY PIECES LIKE THIS DO I NEED
TO HAVE A WHOLE PIE ? WOULD YOU LIKE TO DRAW THE WHOLE PIE ?

(1f unable to do so, the child was asked to trace out the given sector
and tke question was repeated). The next question was similar except that
the childrer were given a square piece of "cardboard chocolate"

and were told that it was a sixth of a chocolate bar. Finally, the
first question was repeated using another sector of circle (1/6) Z{:}
in order to verify it for consistency with the initial response or the
possible acquisition of new skills which might have been induced by
these tasks. The following table provides the distribution of the

students' responses:

vade | » A am IR o e N we
can dxev XY ) con predict can drow ¢ predict can drav can drev can name
hehola pie pare oo, of parts vhola ple no.of parts vhole bar vhole pla part
3 n [] 2 4 [ ] H ? L] b
4 b 11 n 12 11 12 12 12 12
3 [ ] [ ] [ ] [ ] [ ] [ ] 8 8 )
¢ 14 i " 14 14 W 14 py 14

As can be seen from the data, by grade 4, all our subjects have mastered
the process of reconstituting the whole from one of its parts. A com-
parison of the first and last tasks indicates that some learning might
have been induced in two third graders and one child in grade four.
Again, it is the third graders' responses that have provided us with

unexpected insights. In all the above tasks, these children have a
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greater success rate in drawing the whole pie or chocolate bar than in
naming the fraction involved or predicting the number of necessary parts.
This brings up the question of whether or not the notion of fraction
exists prior to the acquisition of the relevant vocabulary. Evidence

of the existence of this notion was provided to us by the two children
who, on the first task, found a way of expressing the notion of fraction
by drawing the whole pie and then telling us that the original piece

was "one piece out of seven" ("un morceau de sept") and "one of seven"

("un de sept') respectively.

Invariance. The last two tasks dealt with the invariance of fractionms.

The first one aimed at assessing if children viewed a fraction as invari-
ant with respect to different equi-partitions. They were presented

with the following two squaresE}E}, . They were asked to verify that
they were the same size, to count the number of parts, and to identify
what part of the square each piece could be. At that point the inter-
viewer raised the question:

IF I TAKE ONE QUARTER OF THIS BISCULIT (coloring it in front of the child)
AND YOU TAKE ONE QUARTER OF THE OTHER BISCUIT (coloring it in front of
the child), DO YOU THINK THAT WE WILL HAVE THE SAME AMOUNT OF BISCUIT,

OR THAT ONE OF US WILL HAVE MORE THAN THE OTHER, OR LESS THAN THE OTHER?

The next task assessed if children could perceive the invariance of a

fraction with respect to the size of the initial figure. They were

provided with two quarters of ples of radii 2" and 4" respectively D
[:) , and asked if each one of them could be a quarter of a pie. 1f

they thought that the pieces could not both be quarters, they were re-
quested to use each piece in turn to draw a complete pie and identify
which part of the pie it was. And then, they were asked a second time:
DO YOU THINK THAT THE SMALL PIECE AND THE BIG PIECE CAN BOTH BE QUARTERS

OF A PIE?
The following table describes the distribution of the responses:
1 . wrt Tnveriance wrt the eise
Grase ] ® “:;::l-‘::r:{uon @ [HD of the initiel figure D
Quarters perceived Quartere perceived | lnitisl vesponse After draving
es aqusl a8 unequel both eectors | eectove not |borh eectovejsectors not
perceived perceived as perceived parcaived as
s quarters both being |ar quarcers |both being
querters querters
L]
3 hett s ) 3 6 s 4
& h2 10 @** 2 12 0 |
s |8 s ° s [ |
Le 14 1 (n** 1 1 2 I U a
L]
Ll

one subject did not wndaretend the word “querter” ("quert").
% the Dusbere in paremtheese tefer to the aumber of eubjacts
who used visusl cempessetios & o Justiticatios of their enewer.
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Regarding the invariance with respect to different equi-partitions of
the square, it seems at first sight that by the fourth grade most of our
subjects were aware of it. However, a closer examination of their Just~
ifications indicates that this conclusion is premature for many of them
(see numbers in parentheses) explained that the rectangular quarter could
be split to make up a square quarter. Thus, their rationale has little
to do with the invariance of fraction since it merely reflects visual
compensation of surfaces. The second task on invariance also indicates
that by the fourth grade our subjects seem to be conscious of it. That
the drawing of the full circles had a certain impact is evidenced by the
two third graders who then found out that both sectors were quarters,

and on the two sixth graders who corrected themselves.

CONCLUSTON

In our exploratory study of unit fractions of a continuous whole, we
have felt the need to provide a clearer definition of this concept.  And
we have come up with a functional approach, a fraction being defined as
"a quantification of the part-whole relationship". This has led us to
distinguish between three distinct levels of the notion of measure:
iterative measure, fractional measure, and sub~unitary measure. The
experimental work reported in this paper has dealt with three aspects of
unitary fractions related to fractional measure. We were surprised to
find that the problem of equi-partition lingered on among our subjects
in the upper grades but we were equally surprised to find that the prob-~

lems of reversibility and invariance had been so well resolved.

Our study of third graders has revealed that the language used to des;
cribe unit fractions created a cognitive obstacle for the children.
Either they simply did not understand the words we used or they assigned
to them & meaning other than the intended fractional one. For instance,
while all subjects understood "moiti&" or "demie" for half, they did not
necessarily understand "tiers" and "quart" for third and quarter,

often preferring "troisiéme" and "quatriZme". But then, as with fifth,
sixth, and other unit fractions, many children associated with these
words the only meanings they had previously acquired, that is ordinal
and cardinal meanings instead of a fractional one. However, we found
that even if young children have not yet learned the conventional vocab-
ulary for unit fractions, they can nevertheless find ways to express
their quantification of the part-whole relationship using expressions

such as "one of n parts". In fact, until pupils become aware of the
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fractional context, using such expressions in the initial introduction

may overcome the cognitive obstacle caused by the use of words having

other meanings.
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SOME DIFFICULTIES WHICH OBSCURE THE APPROPIATON OF
THE FRACTION CONCEPT

O. Figueras, / E. Filloy / M. Vatdemoros
Centro de Investigacitn y de Estudios Avanzados del IPN, México

In the prasent work we will describe saverel difficulties identified via enalyses of the
snswers given by ctudents betwean 11-14 to exercises included on e dlagnostic ques-
tionnaire. The work we have been carring out hes the purpose to further clerify the
reletionship between the acquisition of the fraction concept end the developrnent of
thosa sbilities required 1o interpret end use the geometric lenguage included in the
pictures thet frecuently appear in teaching vehicles (specielly texthooks) for the
contextualisation of the fraction concept.

Theoretical framework and related studies,

Rational numbers appear in the Mexican curricutum ! from the very first years of
elementary schoal. A currlcular analysis of the textbooks (8] shows that the teaching of this
topic encompasses varlous meanings of rational numbers. These meanings are Introduced
concurrently throughout the six years of elementary school.

The teaching approaches of the different Interpretations of rational numbers emphazise
different aspects. For example, in the elementary curriculum of our covatry, we have seen
that:

o Fractions of the unit are introduced highlighting the importance of the actions that
are carried out with &8 given whole.

® The meaning of a fraction as a subset of a collection is approached either within the
problem solving context or as numerical computations; the latter tend to have a strong
algabraic Hlavour.

¢ Decimals are introduced through measuring, but very quickly they are immersed in
algerithimic processes, where the emphasis is on computational rules.

A careful inspection of the textbooks? relfects the use of varlous types of language in
the treatment of the different meanings of rationals. For example,

® With respect to the treatment of Jractions of the unit, pictures of objects and geome.
tic forms are used. All the actions, such as partitioning in equal parts, exhaustive divi-
sion of the whole and identification of the fraction, are represented in these pictures
(geometric language). Later on, thuse pictures are related to the numeral associated to
the fraction which expresses the results of such actions (arithmetic language).
{#] It Mexico, there exists one single curriculum for the teaching ~f cletentary school mathematics in

the whole country, Curricular principles and syllabi are included in the “Teacher s Guide"§17].
Chiildren use the “cost-free rextbooks* 6] which have been prepared in accordance with that gene-

ral plan. .
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In order to understand, via a particular treatment, a certain meaning together with the
relations between the different kinds of fanguage Included in this treatment, it is necessa-
ry to develop some specific abilities.

e With reference to the treatment of fractions of the unit, visualization, perception and
spatial imagination are called upon the learner; as well as his ability to transiate from
one language into another.

We have called teaching model, the set formed by meaning, treatnent, languages and
necessary abilities; together with the inherent relations that exist among them,

Under a particuiar teaching model, a pupil cOMSructs a especific conception of rational
number. Each conception is related to a certain meaning. in the process of constructing
different conceptions, links between then get also established. By establishing these links,
the pupit is building a new mental image of rational number. The reiterstive occurrence
of this process results in the pupil’s adyuisition of the construct rationa! number.

Lately, we have been trying to detect the difficulties that inhibit the establishing of
such links between two or more conceptions. We have also tried to determine the plausi-
ble moments where the juxtaposition of the teaching mode! would tavour the transferring
of knowledge from one conception to another, as well as to foster the creation of those
links -which are seldom spontaneously established.

The literature on rational numbers is vast, because it englobes studies refated with the
different interpretation of rationals.  Among those that have focused on the teaching
models® , we can mention Freudenthal, H{?] , Stieefland L. 4], Kieren T.[t/}Brousseau, G
3] and the work of our mexican colleagues {sec for instance 2] ). Some projects, like the
English oSMS* and SESM® and the American ANP © were sot up with the purpose of under-
standing the relationships between the teaching models and the acquired conceptions
through the process of instruction. Kieren T. et al (14 and the Pothier, Y & Sawada, D. l15]
have lotely reported their resuits related to children’s uses of geometric fanguage in parti-
tioning tasks.

{2} The tcaching at the elementary school in our country, due to its own characteristics (in the urbuan
zones, one group have ~50 students; in the rural areas, you can find in the same classroom students
that belong to different grades, etc.), fundamentally supports on the fex thooks that the Ministry of
Education prepares and distributes. Frecuently, children have access solely 1o such books.

[3]) We are not trying to make a review of the literature on rationals, our purpose is 19 meution some of
the documents of those rescurchers that have been working in this arca and whase work is more
related with the one we are doing.

1 4] CMSM: "Concepts int Secondary Mathematics and Science”, sce for instance, Hart. K. 19 1.
1 5] SESM: “Strategies and Errors of the Secondary Mathematics " see for instance, Kershke, D. 110).
{6) RNP: “Rational Number Profect”, a bricf description can be found in {1.

O
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Aims, methodology and stages of our study.

One of the main purposes of the research sctivities to which we have devoted our
efforts for the past four years is to try to clarify the relation between the acquisition of
the fraction concept, and the developnwent of such abilities as are necessary to interpret
and use the simbolic - geometric language invoivec In the drawings used for the contextua-
lisation of the aforesaid concept.

First Staga.- From the questionnaires used by two studies [13 ), [#4] and those of the
CSMS project [2] , we selected those items which included pictures.  We then made a
comparative analysis of these questions and of the results of the three studies. Once the
most significant difticulties were identified, we clesigned a number of exercises in which
the role of drawings was fundamental. In order to explore the pupils responses to these
exercites, we conduced and videorecorded several interviews with children of ages
between 11 and 13. The analyses of these Interviews were the starting point for the next
stage of the study; (the most interesting results of these analyses were ruported in [4 ],
where & more detailed description of this stage can be found).

Second Staye”? . "We worked out a diagnostic questionnaire structured in a way that
it would permit us to examine various aspects of the concept ot fraction. This evaluation
contains 48 questions and it includes two different meanings of rationals: the one associa-
ted with a fraction as » subset of a collection (which we denominated discrete case} and
the meaning of fraction of a unit. With respect to the latter interpretation, the ouestions
are referred to geometric plane forms (we called this the concrete case) and the plane re-
presentations of tri-dimensional figures.

The questionnaire had been applied during three consecutive years to students of the
first grade of secondary school®, at the begining of the mathematics course {in 1984: one
group - 32 students; in 1985: two groups - 43 students; and in 1986: two groups - 36
students).

At this moment where elementary schoo! Is over and pupils are initiating their second-
ary school, we consider that the observation is crucial.  For us, this is an important didac-
tical cut. During the eletentary school, rational numbers have becn introduced within
varlous teaching models. The syllabus of the secondary include rationals, but the approach
to this topic focuses to the properties of the algebralc structure of these numbers, In
other words, the teaching treatment of rationals turns to a formal and abstract apptoach ,
This teaching model presuppozes that the links between the different conceptions acqulr-
ed in the elementary school, have been appropiately established.

[ 7) A partlal report of this stage can be found in [ 5 }

18 ] Work on this study has been done with students from the “Centro Escolar Hermnanos Revucltas” an
experimental school in Mexico City where we can control the teaching process,

335

RIC

Aruitoxt provided by Eic:




- 369 -

With the dats obtained in the application of the diagnostic questionnaire to the stu-
dents of the first generation {1984), we started a cualitative analyses ¥ . The purpose of
these analyscs was the characterization of the strategics used by the students to solvo the
items of the questionnaire. At first, we classify such procadures in two groups: one of
them contains the strategies that lead pupils to a success and the other one englobes those
in which we observed difficulties and conduced pupils to a faiture.

For sach of such groups we endeavored to categorize the strategles developed by
children, according to the features they displayed (l.e. considering (ne resources to which
they had resorted, and the meaning emerging In each answer).

The characterisation of the answars to the items corresponding to the continuous case
is complotely finished. In this case, we found 14 classes sssociated to failure and 13 to
success. Subcategories of these classes wore also assigned. Subsequently, we carried out
a comparison with the dsta obtalned with the preceding generations {1085. 1986). The
main objective of such comparison was tc distinguish those obstructions which oppear
repeatedly.

In what follows we will describa the more significant categories assoclated with failure
We selected only those classes that are directly related with the fraction concept, Thesa
categories are meaningful because of their incidence of appearance in various contexts, as
wall as for the characterization of the difficulties they encompass. Such hindrancies
inhibit the pupil’s oppropiation of the a orcsatd concepr.  And efforts should be accen-

tuated in the teaching process so that students are helped to surmount such difficultics.
The predominance of the cardinality of the part.

in this class we have rounited those strategies where the fraction given in the item Is
not considered as such, These procedures reveals a disassociation of the numeral and a
tendency to centralise the number that corresponds to the numerator. For this problem
we found three types of subcategorics. We will ilustrate them with answers of the stud:
dents.

o Tho numerator of the {raction Imposes and the denominator is ditplaced (sce Figure 1).

PROBLEM ANSWER _j PROBLEM ANSWER
What fraction Is shaded?] The sixth part of Color -g-oo the cubes. @jﬁ

eigivteen,
L] the sixth part EEE&‘E&W @ﬂ
u: :Ighleen‘ @ Eﬁa @
D D

Figure 1: Examples of answers that carresponds o the subcategory »}, (continous case at the left and
discrete case at the right),

191 A detailed description of these analyses can be found in the partial report of our research | 6]
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b} The oraphicsl rapresentation of the fraction adapts sxclusively to the numerstor of the givan frac-
tion; the denominator it substituted by another number, (see Figure 2).

PROBLEM ANSWER . PROBLEM ANSWER
Use the following figure The drawing shows &
10 represent one third. of the bellons. Draw
the rest of them
i)
3

\

Figura 2: Examgplas of the snswers that corresponds to the subcategory b),
{continous case at the left and discrate case at the right).
c) The numerator of tha given fractions is separsted from the denominator, and in this abscence of the
raistion conitituing the fraction, the first number Is treated at 8 whols number {ses F igure 3).

PROBLEM ANSWERS

We want to maka this figure H
2% ¥emissing. Compiete it. E

INw]

Figura 3; Examples of anc.vers of the subcategory c), for the continous case.

The unequalness of the parts.
The strategies that we have grouped in this class are those in which we identify un-

equal parts. These difficulties appeared in partitioning tasks of geometric forms' ®{conti-
nous case, see Figure 4),

PROBLEM ANSWERS

Draw e squars and represent ,—"'2- .

Figure 4: Examples of answers classified as unequalness of parts.

{10] The traditional conventions considers as uncqual parts, those subdivisions of a plaue figure where
the resulting parts are not congruent. Our interpretation of this problen is different: we identify as
unequal parts those graphic rcpresentations where the subdivisions reveal variations of the arca of
the resulting parts. In (5] there is a discussion of this mater.
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This problem also emerged in the discrete case, where the classification criteria is
more evident; the subsets in which the whole Is divided have a different cardinality.

Difficulties in the partition

Identified in this category are those problems related to the connection between the
sudivision of the whole and the recognition of the fraction.

These difficulties emerged in some partitioning tasks of figures that have a complex
structure and whose subdivision adapted to the fraction that appears in the item, imposes
the simultaneous use of more than one unit of partition, see figure 5. One of the strategies
that lead pupils to a success in the exercise that ilustrates this category, was the considera:
tion of an equivalent fraction.

PROBLEM ANSWERS Success Strategy *

1n the following figure repre- -1
sant 250 1

i1
7

Figure 5; Examples of answers , the middle ones represent procedures that are included in the category
difficulties in the partition

The predominance of the cardinality of the denominator.

in this category we have included those readings of the fraction where the value of
the denominator takes precedence. Again these procedures reveals a dissasociation of the
numeral and a tendency to centralize the number that corresponds to the denominator,
assigning to it the meaning of part.
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COMPUTER-AIDED DIAGNOSIS AND REMEDATION IN FRACTIONS

FONG HO KHEONG
INSTITUTE OF EDUCATION
SINGAPORE

ABSTRACT

Computer has been introduced for use as an artificial intelligence to
analyse data in the area of education. KEducationists have found that
computer has not only help their work more efficiently but also it can
generate information which has not been encountered before. The use
of computer is not considered new in education but using it to analyse
the cognitive thinking processes of students is quite scarce in
mathematics education.

This research study was conducted in line with Ashlock, Brwon, Burton
and VanLehn on the analysis of error patterns. The objectives of the
present study are to develop an automated computer system for
diagnosis and remediation and to construct a conceptual model of
remediation in fractions.

The initial stage of the project began with the construction of an
instrument to investigate the subjects’' performances in fractions. The
items were based on a sct of 13 objectives on the 4 operations of
fractions. The test was administered to 3000 subjects who were
classif'ied as below average in fractions. The test was readminiatered
after a week later. The responses of the subjects were analysed and
sygtematic errors were classified.

An automated computer system for dlagnosis and remediation in the 4
operations of fractions was developed. It consisted of three sub-
systems viz. (a) diagnostic system of errors, (b) tutorial system for
remediation and {c) automated generation of text materials for
remedation.

To accompany the computer system [or diagnosis and remediation a
conceptual model in remediation of fractions was developed which was
based on the hypothetical remedial activities.

Diagnosis and remediation in the teaching of mathematics have been seen
by many teachers as essential for effective teaching. Okey (76)
reported that pupils' achievements tended to go up when teachers give
diagnostic tests frequentiy. It seems to indicate that it is

beneficial tu research further into this area of teachng and learning.

Although the use of diagnosis and remediation in teaching seems to be
¢ncouraging, the amount of time required for implementing the test and
analysing the data to find out the actual cause of pupils' errors will
be tremendous. Unleas the amount of this time can be reduced, teachers
will normally reluctant to carry out this strategy to help their
pupils. Another factor which cannot bt ignored is to determinc the
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accuracy of diagnosing pupils' errors in mathematics. It would be
futile to conduct remedial classes which are mainly based on erroneous
diagnosis. In view of the problems identified above in teaching
mathematica, there is a need for mathematics educationist to look into
ways which can help teachers to reduce their burden in diagnosis and

analysis of data. The topic on fractions is used as an example.
REVIEW OF LITERATURE

"Diagnosie and remediation' is not something new in the mathenatics
education curriculum. However, research using computer (especially
microcomputer) to help diagnosing and remediating pupils with
mathematics difficuities 18 not numerous.

Basically the concept and work done in the area of diagnosis are
pursued in two direction. The first group of mathematics diagnosticians
concentrated their work on categorising the types of errors according
to some major classificatione. Robert (68) had classified four error
categories viz. wrong operation, obvious computation error, defective
algorithm and random response. The work of Engelhardt (77), Cox (75)
and Knifong (80) were quite close to Robert's work on errors analysis.
This area of research was found to have two limitations. First,
researchers tended to emphasise on written regsponses and there had been
few attempts to analyse pupils difficulties by talking to them. Second,
emphasis was placed on difficulties related to a type of mathematical

task rathzr than a whole range of difficulties which pupil experience.

The work of Ashlock (76) had indeed given rise to another group of
mathematics diagnosticians. His work was concerned with the
identifications of error patterns in computation. Methods for
correcting pupils' errors in computation were suggested in his book
'Error Patterns in Computation'. Brown and Burton (78) constructed
some diagnostic models of tasic skills (addition, subtraction, etc.)
using a representation technique called 'procedural networks'. Using
these diagnostic models, two computer-based systems, BUGGY and DEBUGGY,
were developed to teach both students and student teachers about the
strategies of diagnosing bugs. Later, Brown and Van-Lehn (81)

introduced the Repair Theory in an attempt to explain how the bugs
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(systematic errors) were acquired by students and how they were held.
Travis and Carry (83) and Woerner (B0) did similar kind of work to
identify students' errors in multiplication and aadition of fractions
respectively. Travis and Carry concluded in their study that the
diagnosis-remediation combinationswere effective for remediating
students' errors in multiplication. Woerner concluded that the use of
computer for dlagnosis was effective for probing more information.
Bright (84) suggested that further computet-based diagnostic system

should incorporate CAI for remediation.
OBJRCTIVES

In view of the previous research and suggestions discussed on the

previous paragraphs, a research praject was initiated to investigate
further into this area on fractions. The main objectives of the
research study are to
(1) classify a near-exhaustive set of error patterns in fractions.
(2) develop a computer system for
(a) analysing pupils' erroneous algorithms in fractions.
(b) generating tutorial questions in remediation.
(¢) generating text materials for remedation.
(3) derive a diagnostic model for remediation in fractions.
() test the accuracy of the computer system in diagnosing pupils'
errors in fractions.
(5) investigate the effectiveness of this approach as comparcd with

the 'usual method' for remediation adopted in the local context.

At the time of writing this paper, objectives (4) and (5) above have

not been realised.

METHODS
Sample

The sample for thiu study consisted of about 3000 average and be low
average pupils from 30 schools in Singapore. They were selected from
the Primary 5 and 6 of the Normal Stream and the Primary 6, 7 and 8 of
the Extended Stream (pupils take 6 years and 8 years to complete the

Primary Education in the Normal and Extended Streams respectively).

O
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-nstrument

A diagnostic test on the addition of fractions was constructed which
was hbased on the pre-determined objectives. The thirteen objectives
identificd for the test were

nddition of Fraction (Denominator ¢ 12)

11) Addition of simple fractions with like denominators.

(2) Addition of simple fractions with unlike denominators.

(3) Addition of mixed numbers with like denominators.

(4) Addition of mixed numbers with unlike denominators.
Subtraction of Fractions (Denominator = 12}

(5) Subtraction of simple fractions with like denominators.

(6) Subtraction of simple fractions with unlike denominators.
(7) 4 btraction of mixed numbers with like denominators.

{8) Subtraction of mixed numbers with unlike denominators.
Multiplication of Fractions (Denominator = 12)

(9} Multiplication of a simple fraction and a whole number.
(10) Multiplication of a simple fraction with a simple fraction.
Division of Fractions {Denominator = 12)

(11) Division of a simple fraction by a whole number.

(12) Division of a simple fraction by a simple fraction.

{13) Division of a whole number by a simple fraction.

In each objective identif'ied above, 4 parallel items were used to test
the subjects' knowledge in the algorithmic skills. This was to ensure
that the different types of errors were identified viz. systematic
crrors and non-systematic errors due to misreading a question or

guessing a solution.
Procedure

The above diagnostic test waos administered to the 3000 subjects with the
help of 60 Certificate in Eduction students of the Institute. The
subjects were retested in the tollowing week. In both tests, no time
limit was imposed on the subjects. They were told to hand in their
pupers as soon as they had t'inished their work. Pupils' responzes to
each item of the tests were marked. Incorrect responses were carefully
analysed to determine the actual error pattern of each mistake.

Subjects were also interfviewed when their errors made were randomised

[Elz:f(:‘ ‘1 (}13
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or they would be asked to think aloud on working a similar problem,
The results obtained in the second test were used to check whether the

erroneous strategles used by the subjects were systematic.
COMPUTER SYSTEM FOR DIAGHOSIS AMD REMEDATION

Owing to the nature of the topic on fraction, it is not the intention
of this study to construct a procedural networks to show a general
diasgnostic model in fractions. However it was found that, on the
average, about 8 error patterns, were identified in each objective.

It would not be possible to list all of them here in this short paper.

It can be envisaged that teachers find difficulty to memorise all these
error patterns. Besides it ls also time consuming to analyse
individual's error in performing operations in fractions and other
topics. Hence an automated computer system is devcloped to reduce the
burden of teachers who would, presumably, reluctant to perform the

above tasks without such a system.

The Automated Computer System developed consista of three aub-gystems.
They are the

(1) Diagnostic System of Errors in Fractions.

(2) Tutorial System for Remediation in Fractions.

(3) Automared Generation of Text Materials in Fractions for

Remediation.

The Diagnostic System of Errors in Fracfiona is a system that can
generate randomised questions which were based on the 13 pre-dctermined
objectives. It can also determine the subjects' errorenocus strategles
in performing the 4 operations of fractions. The subject is expected,
if desired, to work out the problem on a pilece of paper. The answer 1o
keyed into the computer and it will logically analyse the subject's

work and the probable cause of error is printed out.

The following tables show an examinee's performances printed out from

this computer system.
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Table 1 : Analysis of a Pupil's Performances in Fractions

Objective (3) : Addition of mixed numbers with like denominators
Iten 1 : (a) Time taken t Y secs
P B A ()
(b) Question : 211 + 211 422
(¢c) Error Pattern : Add the whole numbers, the numerators

and the denominators correspondingly.

Table 2 : Summary of Results

Objective No. Item No. Reault Time Taken (sec)

1 1 Wrong 16
2 Wrong 6
3 Wrong i
] Wrong 8
2 1 Wrong 10
2 Right 7
3 Wrong 6
4 Wrong 5

The Tutorial Syatem for Remediation is a system that generate
randomised questions for drill and practice. The system is used to
provide questions for drill and practice after the subjects have
undergone remedial lessons conducted by the remedial teachers., The
following table shows an example of the printout which summarises the
examinee's performances.

Table 3 : Summary of the Pupil's Performances in Fractions

Objective No. of No. No. % Time
No. Question Right Wrong Right Taken (sec)

1 10 5 5 50 12

2 10 6 4 60 23

3 10 3 7 30 13

] 10 2 8 20 43

Total 40 16 24 91

Average 40 22

The Automated Generation of Text Materials in Fractions for Remediation
is designed to generate additional materials for the subjects to
practice at home. The answers are also provided for the subjects to

check the accuracy of their work.
MODEL FPOR REMEDIATION IN FRACTIONS

An overview of the error patterns made by the subjects in this study
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shows that most of the errors made are rudimentary. It is possible to

use Brown and Van-Lehn's Repair Theory to explain the occurances of the
bugs. The examinees tended to apply a simpler strategy to work out the

algorithmic operation.

An analysis of ecach error pattern was carried out and it was found that
it has its own error identity. On the basis of its uniqueness, a set
of hypothetical remedial activities was suggested that would most likely
alleviate the weaknesses of the subjects. The following example shows
an error pattern in multiplication of 2 fractions and the possible

remedisl actions for those subjects who err in this type of problem.

N1 N2
Question 21 X D2 °
" N1 _ N2 _ N1D2 x N2D2
Error Pattern : i X D2 ° oz
Treating ‘as '+’
Weeknesses : Recognition of symbols
Remedial Activities : (1) Further diagnosis on the recognition of
symbolg + and x
(2) Concept of Multiplication of 2 fractions
(3) Algorithm {n multiplication of 2
fractions
(4) Comparing addition and multiplication

algorithms

To illustrate an example of the construction of a remediation model, an
anslysis of the remedial activities to cater for the subjects who have
not mastered the multiplication of a simple fraction with another
simple fraction/whole number was carried out. Using these remedial
activities, a conceptual model for remediation of multiplication of

fractions iy constructed as shown in figure 1 on page 10.

Each remedial activity is placed at one of the six levelg identified
To help teachers identify the exact level at which the subject has not
achieved, the computer system may print out the required level for
remediation. Based on the conceptual model for remediation of
multiplication of fractions, teachers are able to sclect a set of those
remedial activities classified at and below the level identified by the

computer system.

El{fC‘ 406
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CONCLUSION

Two important outcomes are seen to emerge out of this study viz,
development of an autowated computer system for diagnosis and conceptul
’Fgg:éiggfon of fractions. This computer system and the conceptual
framework for rcmediation provide an alternative approach for
individualising instruction in mathematics. It serves as a prototype

system to cater for other areas of mathematics.

Some features of thius system are worth noted for future implementation.
It does not only provide with accurate diagnosis of errors but also it
helps to reduce the investigator's time to analyse examinees' errors.
With the remedial.information printed out, investigator may conduct
remedial activities immediately without wasting much time in looking for
remedistion matervials. ln the process of using the system for
diagnosis, the investigator may also be aple to collect further
information on error patterns as the set of error patterns identified
earlier may not be exhaustive. This provides additional information

for research.

Two assumptions have been made in this study. The hypothetical
remedial activities are asgumed to be effective and exhaustive.
Further research should concentrate on verifying the remediation model

and the accuracy of the diagnostic gystem.
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CAYEGORIZAYION OF FRACTION WORD PROBLEMS

Pamela Thibodeau Hardiman
University of Massachusetts

What information in a word problem does a
problem solver use to decide that it should be
solved similarly to another problem? Do
nonexperts and experts use different types of
information? This set of four studies showed
nonexpert and expert problem solvers do
categorize problems differently, nonexperts
relying more on surface feature similarity.
However, nonexperts improved judgments of
solutfon similarity when the problem type was
constant. The results suggest: 1) the
distinction of surface and deep features may not
be rich encugh for describing categorization c”
problems, and 2) problem solvers attempt to use
all features of similarity that they perceive.

What information in a word problem does a person use in order to
decide what operation to perform to solve the problem, and how is that
information used? One way in which this question can be approached is
to ask whether a problem would be solved similarly to another problem.
Studies of problem solvers in physics (Chi, Feltovich and Glaser, 1981,
Larkin, McDermott, Simon, and Simon, 1980) suggest that novices and
experts attend to different types of information when classifying
problems according to solution similarity: novices classify problems
mainly with respect to surface similarity, whereas experts classify
problems on the basis of principle of solution. Similar observations
have been made with good and poor problem selvers in the same grade in
school: poor problem solvers are often misled by surface structure or
“pseudo” similarities (Silver, 1979, 1981). Although the product of
categorization tasks is different for nonexperts than experts, it is not
obvious that nonexperts and experts actually approach the task in
different manners. The intention of the following set of studies is to
determine whether expert and novice categorization behavior can be
explained using a single set of principles.
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I will begin by proposing the Surface Feature hypothes is and
attempt to show that it cannot account for the data. The Surface
Feature hypothesis is that in categorizing problems, nonexperts attend
to the surface structure, or storyline, while experts consider only the
deep structure, principle by which the problem should be solved. One
limitation of this hypothesis is that it provides no obvious route for
the acquisition of expewrtise: how does the nonexpert progress from
using surface features to classifying by principles? The transition
might be accomplished if one assumes that the nonexpert is capable of
categorizing on the basis of principles and does so when possible.
However, later I will argue that the correct and incorrect categor-
izations of experts and nonexperts can be accounted for by assuming that
all percelved similarities are used in the categorization process.

Two types of tasks are employed in this set of studies to infer
how the information in the problem statement is used in solving a
problem: 1) the choice of operation used to solve a problem, and 2)
judgments of the similarity between problems. Arithmetic word problems
containing fractions were chosen as the domain of investigatioun, since
the types of problem can be well defined, and since a large proportion
of high school students (Carpenter, et al, 1980) and adults {Watson,
1980) are unable to use rational number concepts fluently, even after a
considerable period of instruction in school. A secondary goal of these
studies was to try to understand why arithmetic word problems that
contain fractions are difficult to solve.

One plausible explanation is that all word problems are more
difficult to solve than correspondingly similar computational problems.
However, the NAEP data (Carpenter et.al., 1980) for 13 year olds,
clearly argues against this explanation, as the differences in
performance between word and conmputational preblems of similar types are
neither constant in size nor always in the same direction.

A second explanation s that since fractions are more complex
numbers, being composed of two parts, they add incrementally to the
difficulty of a problem. Although such complexity may adversely affect
the development of computational skills, the presence of fractions in a
word problem does not neccessarily make it harder to understand the
probiem situation. This is an experimental question, which will be
addressed in Study 1,

A third explanation is that number type (whole number or fraction)
influences the kinds of units allowed, and hence the possible structures
of word problems. Because of such differences, it is not always

El{fC‘ 411

Aruitoxt provided by Eic:




[E

-385_

possible to simply substitute fractions for whole numbers (and vice
versa) and retain the structure of a word problem. In cases where there
is a lack of parallelism in problem struture, nonexperts would likely
have difficulty interpreting a problem statement. For example, consider
the following fraction multiplication problem:

"Margret had 4/5 of a gallon of {ce cream. She gave 1/5 of the
ice cream to her sister, Anne Marie. How much ice cream did Anne
Marie receive?"

The basic solution approach is unaffected if Margret had 4 instead of
4/5 of a gallon of ice cream. However, the 1/5 cannot be replaced with
a whole number and have the problem remain a multiplication problem.
This is true for all word problems in which the multiplier, or operating
number, is a fraction. In general, the structure of addition and
subtraction problems makes it possible to substitute fractions and whole
numbers without altering the meaning. Measurement division problems are
likewise unaffected, implying for all three cases little difference
between nonexperts' understanding of the whole number and fraction
operations. However, nonexperts will he likely to experience
difficulties with fraction multiplication problems because of the lack
of parallelism.

The four studies reported here concerned: 1) assessing relative
difficulties of problem understanding, 2} judgment of solution
similarity by cxperts and nonexperts, 3) how judgments of solution
similarity may be facilitated, and 4) replication of results with a
younger population. The subjects were two groups of college students
(N=48 and N=57) enrolled psychology classes at UMass, and one group of
eighth graders (N=52) from a local junior high school. Preliminary
analyses for each study showed no main effects or major interactions
involving sex.

In all studies, the problems had two numbers, were solved with
one-step, and the result of the operation was unknown. Two types of
word problems requiring each operation were used: Active and Passive.
Active problems involved an action integral to the problem storyline,
while Passive problems described and asked about a relationship between
the two problem elements. For example:

Hansel began the trip with 3/4 of a pound of bread. He used 1/4

of a pound of the bread to mark the trail. How much bread did
Hansel have then?

Ernest had 1/5 of a box of typing paper. George had 4/5 of a box
of typing paper. How much more paper did George have than Ernest?
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STUDY 1: ASSESSMENT OF PROBLEM TYPE DIFFICULTY

The purposes of Study 1 were to: 1) assess relative differences
in levels of understanding anong the set of fraction problem types,

2) determine whether the complexity of fractional numbers could be ruled
out as an explanation for the poor performance on fraction problems, and
3) provide an index of expertise in solving fraction word problems,

The subjects were given eight fraction word problems, one of each
of the eight types, and were to indicate which one of the four
arithmetic operations should be performed on the two numbers given in
the problem in order to solve it. The group 2 adults were also given a
set of eight problems that each contained two whole numbers.

Results  The mean performances (and patterns of correct answers)
for Groups 1 and 2 on the fraction problems were similar: 67% versus
69%. There were considerable differences among the four operations for
both groups, F(3,141) = 45,95, p < .0001, and F(3,168) = 40.78, p <
.0001; the means were addition: 92%, subtraction: 86%, division: 37%,
and multiplication: 34% (all pairwise differences were significant with
a Bonferrroni test {p < .008), except between addition and subtraction).

There were considerable differences within operations as well:
subjects did not understand equally well al} problems which require the
same operation, as indicated by the significant activeness within
operation effect, F(4,188) = 9,62, p < .0001 and F(4,224) = 8.87, p <
0001, Better performance was generally associated with the active
problems, but the size of the effect was quite variable.

If the poor results on this task with multiplication and diviston
problems result from a poor understanding of these operations, this
should be reflected in performance on whole number problams. However,
Group 2's performance on the whole number problems rules out this expla-
nation, since the mean percent correct was 98% (versus 69%), and ranged
from 95% to 100% correct, making the pattern of results quite ditferent.

STUDY 2: JUDGMENT OF SOLUTION SIMILARITY

Study 2 tested the Surface Feature hypothesis: Do nonexperts
consistently categorize problems on the basis of surface features, and
do experts consistently sort on the basis of deep structure? In this
study, subjects were given a standard problem with four alternatives,
and were to determine which two of the four alternatives would be solved
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similarly to the standard. The alternatives were structured so there
was a match in: 1) both surface structure and operation (B), 2) only the
operation (0), 3) only the surface structure (S}. and 4) neither
dimension (N). The Surface Feature hypothesis predicts that all
subjects should choose the B alternative, since it has a similar
storyline and requires the scie operation for solution as the standard.
However, for the second choice, nonexperts should consistently choose
the S alternative, while experts would always choose the 0 ailternative.

The problems. varied in operation, activeness of standard, and in
the difficulty of performing the computations with the numbers in the
problems. Expert subjects were those who made zero or one mistake in
identifying the operations for solution in the study 1 task.

Results There was a main effect of error level, F(3,36) = 4.42,
p = 0.0096; the more experts subjects (0-1 errors) performed better
overall (84% correct) than the less expert subjects (2, 3, and 4-5
errors, 66% correct), t(38, onetailed) = 3.37, p < 0.001. There were no
significant differences among the three nonexpert groups.

As predicted, both experts and nonexperts frequently (89%) choose
the B alternative. It was chosen more often than the 0 alternative
(53%), F(1,36) = 94.67, p < 0.0001, indicating that a match in surface
structure facilitates the decision that problems are solved similarly.
when one of the selections was incorrect, 62% of the time the S
alternative was chosen, indiéating a tendency to judge solution
similarity on the basis of surface features. However, 47% of the time
the nonexperts did correctly choose the 0 alternative. In contrast,
experts did not consistently judge similarity on the basis of deep
structure, choosing the 0 alternative only 71% of the time. Together,
these results imply that the Surface Feature hypothesis cannot be true.

STUDY 3: FACILITING OF JUDGMENTS OF SOLUTION SIMILARITY
As study 2 has shown, judgments of solution similarity can be
facilitated by similarity of storyline. However, it is possible that
similarity in the types of words, actions, and sftuations that occur are
sufficient to produce such facilitation. For example, consider the
following two active multiplication problems:

Mary cooked a 3/4 pound steak for dinner. She ate 1/3 of the
steak. How much steak did she eat?

Tom found 1/4 of a bottle of glue. He used 3/4 of the glue
building a birdhouse. How much glue did he use?
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Both problems concern the size of a fraction of the original quantity
that has been consumed. In contrast, the following passive problem

involves no consumption:

7/8 of the sandwiches the waitress delivered were hamburgers. 1/4
of the hamburgers were cheeseburgers. What fraction of the
sandwiches served were cheeseburgers?

Although these problem are similar, in that they require the same
operation for solution, the similarity seems harder to recognize than
that which occurs when the problem type is the same. In study 3, the

hypothesis tested is that a match in problem type facilitates the
judgment of solution similarity.

The task was to choose which of four alternatives (requiring
addition, subtraction, multiplication, and division for solution) would
be solved similarly to a specified standard. The sets of alternatives
were structured so that: a) all alternatives were of the same type,
active or passive, and b} they had story lines that were as similar as
possible. The standard had a different story line and could either
match or mismatch the alternatives in problem type. There were 16 items

on this task: 4 operations x 2 types of standards x 2 (matching or

mismatching) sets of alternatives.

Results The results indicate that similarity of problem
structure facilitates the decision that two problems require the same
operation for solution. The main effect of match in problem type was °
highly significant, F(1, 56) = 28.00, p < .0001: subjects chose the
correct alternative more often when the problem types matched. However,
this size of this effect differed with operation, F(3,168) = 9.41, p <
0.0001. A match in problem type provided the most facilitetion for
subtraction (73% vs 40%) and division (71% vs 44%) items, a smaller
facilitation for addition items (88% vs B80%), but no facilitation for
multiplication items (54% vs 54%). Thus, facilitation is greater for
problems that students have moderate difficulty understanding.

Study 3 indicates problem solvers are able to utilize features ¢f
similarity due to problem type to judge solution similarity. Such
features might include common patterns of actions, such as “giving-to*
or “-from* (see Kintsch and Greeno, 1985 for other types of action
patterns), similar questions, and the use of related words or phrases,
such as “gave away", "spent”, and "lost." Since there was little
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overlap of key word phrases, the similarity perceived is related to the
meaning of the words, not the actual words .

STUDY 4: REPLICABILITY WITH A YOUNGER POPULATION

One objection which could be raised concerning the first three
studies is that nonexpert college students should not be considered true
novices, because they have had a considerable opportunity to practice
and apply inappropriate problem solving stratgies. To determine whether
this objection has any justification, the studies were repeated with
eighth grade students, who were the youngest students available who had
completed all instruction in fractions. It was conceivable that overall
levels of performance would be higher for the more experienced subjects,
but the trends should correspond.

Results In general, the performance of the eighth graders was
quite similar to that of the college students. In the study 1 task, the
overall performance of eighth graders was lower than that of the college
students, F{1, 105) = 20.98, p < 0.0001. However, there were no inter-
actions with age, indicating eighth graders had difficulty with the same
types of problems, They also tended to err in the same way as adults.

For eighth graders, the study 2 task was modified slightly, so
that performance on task 1 could be used to predict when subjects would
err on the similarity judgment task. It was predicted that subjects
would consistently confuse operations between tasks. In fact,
performance on task 1 did correlate with performance on task 2, r =
0.571, £(51) = 4.96, p < 0.001, suggesting subjects tend to make surface
feature errors when they do not understand the operation with fractions.

In study 3, the eighth graders performed nearly as well the adults
on the matching task (58% vs 62% adult, N.5.). The one significant
effect involving age was an interaction of age, match, and operation,
F(3,153) = 4.38, p = 0.0055; this seemed mainly due to eighth graders
having more difficulty distinguishing active subtraction and active
multiplication problems. In conclusion, the ways in which adults differ
from eighth graders are also ways in which thay are better than eighth
graders: nonexpert adults do not make different kinds of errors from
"true nuvices”.

GENERAL DISCUSSION
The studies reported here imply that the strong form of the
surface Feature hypothesis is false: nonexperts do not consistently use
similarity of surface features as a basis for a judgment of solution
\(o 416
ERIC

Aruitoxt provided by Eic:




- 390 -

similarity. They do tend to rely on surface feature similarity if they
have difficulty understanding the concepts of the operation, but the
eighth graders performance on study 2 showed this tendency is not
consistent. Hence, even a weaker form of the Surface Feature hypothes is
would not appear to account for the data.

In fact, study 3 suggests that the surface/deep structure
distinction nay not provide a sufficiently rich scheme for understanding
problem classification, since judgments of solution similarity were
facilitated by a match in problem type. Problem type must provide the
basis for a structural analysis which is intermediate between surface
and deep structure. Actually, since the deep structure must be derived
from the problem text, it is plausible that a useful level of structure
might result without a complete analysis of the deep structure. If this
is true, it also provides a reasonable explanation for why experts
occassionally err; subjects of all levels of expertise categorize
problems on the basis of the features of similarity that they perceive.
If the analysis of structure is halted before it is complete, either
because of a lack of knowledge or from falsely perceived similarity, the
subject is likely to be incorrect.
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COGNITIVE EFFECTS OF INSTRUCTION DESICNED TO PROMOTE
MEANING FOR WRITTEN MATHEMATICAL SYMBOLS

James Hiebert
Diana Wearne
University of Delaware

Students in grades four, ftive, and six were taught
a special two-three week unit designed to assist rhem in
creating appropriate meanings for decimal frdaction
symbols. Based on theoretical analyses, it was
hypothesized that students would acquire appropriate
meanings and would use the meanings to solve a variety
of decimal problems. Many of the studenrs in the first
study, who were instructed in small groups, did acquire
and use semantic-based processes to solve decimal
problems, including novel transfer problems. Students
in the second study, who were instructed in a whole
classroom, largely exhibited semanric processes on the
instructed problems but they did not transfer the
processes to novel situations. Possible explanations
for the differences between samples are discussed.

One of the most widespread and persistent complaints about
students' behavior on machematical tasks f{s that it {s overly
mechanical and inflexible. Even when students perform well, further
analyses often show that their skills are applied in a rigid way and
are tied ro particular tasks (Carpenter, Matthews, Lindquisr, &
Silver, 1984; Hiebert & Wearne, 1986).

Currently we are exploring the narure of one potentially
fundamental cause for the rigidity of students' marhemarical bebhavior
and their coincident low performance on even slightly nonroutine
tasks. Our hypothesis is that much of students' mechanical behavior
fn mathematics results from drill-and-practice of symbol manipularion
rules before establishing meaning for the wrirten symbols they
manipulate. In other words, conventivnal instruction is not
sufficiently sensitive to the importance of creating sound, rich
meanings for writren representatjons at the outset. We are examining
this hypothesis by studying the effects of altered instruction on the
cognitive processes students use to solve mathematical rasks. The
domain of interest {s the introduction of decimal fractions to
elementary school students.

Theoretical Context
We propose that competence with written mathematfcal symbols

develops through the sequential and cumulative mastery of four
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distinet cognitive processes (Hiebere, 1987). The 11rsr two
processes develop rhe semantics ol the particular symbol sysrem and
the second two elaborare 10s syntax. [he lour processes are: (1)
crearing medning tor individual symbols by connecring them with
tamlrar or meaningtul referenrs; (2) developing symbol manipulation
procedures by retlecting on rthe meanings ot rhe symbols; (3)
elaborating and routinizing the procedures and rules for symbuls; and
(4) using the symbols and rules as referents tor building a more
abstract symbol sysrem.

The first two processes are of most 1nterest here because they
are the processes that we hyporhesize to be crucial for further
success 1n mathematics and, at rthe same ti1me, are processes thar
apparen Iy are not cultivated in conveniional 1nstructional programs.
Gur objective was to provide explicit opportunities tor students to
dcquire processes that create meaning tor written symbols, and
processes rhar use these meanings to gnide the development ot simple
procedures on symbols. By monitoring students' behavior over the
spectal instructional sequence, it was poussible ro document changes
in cognirive processes and to rrace rhe eftects ol these changes on
performance. In particular, it was possible to examine the role of
semant ic~based processes in developing 1nitial competence with
written symbols.

Merhodology
Samples

Two different samples were used to provide different
insrructional settings. ln the tirst study, the sample consisted ot
nine students in grade tour and ten students in each of grades five
and six. All fourth graders and tive ot the tifth graders had not
been instrucred previously in decimals. Students represeant ed
difterent achievement, racial, and gender groups. This sample was
used to examine the eftects of instruction 1n small group sererings.

In rhe second study, the sample consisred of an entire classroom
ot 30 fifth graders. Most students in the class scored between the
4Cth and 60th percentiles on recent yiandardized achievement fests in
mathemat 1cs; they represented a mix of gender and racidl groups.

Most of rhe srudenrs had received briuf previous instruction in
decimals.  This sample was used to investigare the effects o

fustruction in whole classroom sertings,
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Instruction

Instruction in the two studies ditfered slightly so they will be
described separately. In study one, students participaied in «
sequence of nine activities covered in seven ro nine 25 minute
lessons taught by one ot rhe authors. The tirst five activities
focused on process one—-developing explicit connections berween the
written notation for decimal fractions (through hundredths) and
reterents that represented quaniity in a concrete way. Dienes base
ten blocks were used tor the referents. The last four activities
tocused on process two in the context of addition and subt racton.
Students were asked to use the block referents and the joining and
separating action on blocks to guide rheir decisions about how to

deal with the associated written symbols. They were not shown

procedural rules with symbols, such as lining up decimal points
before adding or subtracting.

In the second study, students participated in a sequence of
ecleven 35 minute lessons taught by one of rhe authors. The first
eight lessons were similar to the nine lesson sequence employed in
study one. Lesson nine returned to process one using the number line
as a referent. The aim here was to enrich rhe meanings students
could connect with written symbols by providing another visual
representation of decimal fraction quantitics. Lessons ten and
eleven focused on process two in the context of ordering decimals and
changing berween decimal and common fraction form. Again, students
were not shown rules for manipulating symbols but were asked to use
what they knew about decimal tractions to deal with the symbols
appropriately.

Evaluation

Two kinds of measures were used to assess the ettects of
{nstruction on students' perfo